Introduction
The visualization.py
module is a key component of the G.O.D Framework, designed to create
visual representations of data insights. It facilitates interactive plots, dashboards, and static reports
to provide end-users with a deeper understanding of their data. With its integration of widely used
visualization libraries, it delivers an intuitive experience for monitoring key metrics, trends, and patterns.
Purpose
The primary goals of the visualization.py
module include:
- Translating raw data and analytical outputs into visually comprehensible formats.
- Providing support for real-time dashboards for tracking KPIs and system health.
- Enabling customization of visualizations for different use cases (e.g., anomaly detection, data distributions).
- Supporting seamless integration with the G.O.D Framework backend and data pipelines.
Key Features
- Interactive Visualizations: Generates plots such as time-series, heatmaps, and scatter plots in an interactive format.
- Static Reporting: Exports data visuals into static formats like PNG, PDF, or HTML reports.
- Integration Support: Interfaces with data from AI modules, pipelines, and external sources.
- Customization: Enables users to specify custom themes, color palettes, and chart types.
- Dashboards: Facilitates real-time status tracking with integrated dashboards.
- Library Support: Built on top of popular libraries like
matplotlib
,seaborn
, andplotly
.
Logic and Implementation
Below is a simplified implementation of the visualization.py
module demonstrating its core features:
import matplotlib.pyplot as plt
import seaborn as sns
import plotly.express as px
import pandas as pd
class Visualization:
"""
A class for creating visualizations in the G.O.D Framework.
"""
def __init__(self):
self.theme = "default"
def set_theme(self, theme_name="default"):
"""
Configures the visualization theme.
Args:
theme_name (str): Name of the theme ("default", "darkgrid", "lightgrid").
"""
self.theme = theme_name
sns.set_theme(style=theme_name)
def plot_time_series(self, data, x, y, title="Time Series Plot", save_path=None):
"""
Creates a time series plot using matplotlib and seaborn.
Args:
data (pd.DataFrame): The dataframe containing the data.
x (str): The column for the x-axis.
y (str): The column for the y-axis.
title (str): Title of the plot.
save_path (str): Path to save the plot as an image (optional).
"""
plt.figure(figsize=(10, 6))
sns.lineplot(data=data, x=x, y=y)
plt.title(title)
plt.xlabel(x)
plt.ylabel(y)
if save_path:
plt.savefig(save_path)
plt.show()
def create_interactive_plot(self, data, x, y, color=None, plot_type="scatter"):
"""
Uses Plotly to create interactive plots.
Args:
data (pd.DataFrame): The dataframe containing the data.
x (str): The column for the x-axis.
y (str): The column for the y-axis.
color (str): Column for color encoding (optional).
plot_type (str): Type of plot ("scatter", "line").
Returns:
plotly.graph_objs.Figure: An interactive plot.
"""
if plot_type == "scatter":
fig = px.scatter(data, x=x, y=y, color=color, title="Interactive Scatter Plot")
elif plot_type == "line":
fig = px.line(data, x=x, y=y, color=color, title="Interactive Line Plot")
else:
raise ValueError("Unsupported plot_type. Choose 'scatter' or 'line'.")
fig.show()
return fig
The above example demonstrates key visualization functionalities, including:
- Static visualizations using
matplotlib
andseaborn
. - Interactive charts with
plotly
, allowing dynamic exploration of data. - Theme customization to match user preferences.
Dependencies
- matplotlib: For generating static figures and charts.
- seaborn: Provides enhanced aesthetic and statistical plotting.
- plotly: Facilitates interactive graphs and dashboards.
- pandas: Handles data manipulation and input for visualizations.
Integration with the G.O.D Framework
This module interacts with several key components of the G.O.D Framework, enabling seamless data visualization:
- ai_monitoring: Provides real-time visual monitoring of system health and metrics.
- ai_anomaly_detection.py: Visualizes detected anomalies for better interpretability.
- ai_automated_data_pipeline: Displays pipeline statistics, data flow, and bottleneck analysis.
- ai_dashboard: Integrates dashboards with visualized KPIs for stakeholders.
Future Enhancements
- Support advanced 3D visualizations for deeper insights.
- Integration with external BI tools such as Tableau or Power BI.
- Introduce auto-generated visualizations based on metadata or data profiles.
- Enable embedding visuals within the framework's web interfaces.