G.O.D Framework

Documentation: test_data_ingestion.py

Testing the core data ingestion pipeline for consistency, accuracy, and robustness.

Introduction

The test_data_ingestion.py script is designed to validate the functionality, accuracy, and robustness of the data ingestion pipeline. This module plays a crucial role in ensuring that incoming data conforms to the expected schema, is correctly pre-processed, and ready for further use within the G.O.D Framework workflows.

Automated unit tests and integration tests within this script ensure continuous quality assurance for the ingestion process.

Purpose

The primary objectives of test_data_ingestion.py are:

Key Features

Logic and Implementation

The script utilizes Python's unittest framework and mocking tools to create reproducible and isolated test environments. Below is the core implementation for reference:


import unittest
from unittest.mock import patch, MagicMock
from ai_automated_data_pipeline import DataIngestionPipeline


class TestDataIngestion(unittest.TestCase):
    """
    Unit and Integration Tests for the Data Ingestion Pipeline.
    """

    def setUp(self):
        """
        Set up the test environment with mock dependencies.
        """
        self.pipeline = DataIngestionPipeline()

    @patch("ai_automated_data_pipeline.DataIngestionPipeline.fetch_data_from_source")
    def test_data_fetching(self, mock_fetch_data):
        """
        Test the data fetching process from a data source.
        """
        # Mock the fetch_data_from_source method
        mock_fetch_data.return_value = [{"id": 1, "value": "test_data"}]
        result = self.pipeline.fetch_data_from_source()
        self.assertIsInstance(result, list)
        self.assertEqual(len(result), 1)

    def test_data_schema_validation(self):
        """
        Test data schema validation step.
        """
        valid_data = [{"id": 1, "value": "test_data"}]
        invalid_data = [{"id": "not_int", "value": "test_data"}]
        # Testing valid data
        self.assertTrue(self.pipeline.validate_data_schema(valid_data))
        # Testing invalid data
        self.assertFalse(self.pipeline.validate_data_schema(invalid_data))

    @patch("ai_automated_data_pipeline.DataIngestionPipeline.store_data")
    def test_data_storage(self, mock_store_data):
        """
        Test the data storage process is functioning correctly.
        """
        mock_store_data.return_value = True
        result = self.pipeline.store_data([{"id": 1, "value": "test_data"}])
        self.assertTrue(result)

    def tearDown(self):
        """
        Clean up the test environment.
        """
        del self.pipeline


if __name__ == "__main__":
    unittest.main()
        

This implementation thoroughly tests different stages of the pipeline, including:

Dependencies

Integration with the G.O.D Framework

The test_data_ingestion.py script is tightly integrated with the following modules:

Future Enhancements