G.O.D Framework

Script: ai_universal_integrator.py

A robust tool for orchestrating universal integration across AI workflows and modules.

Introduction

The ai_universal_integrator.py script is a critical utility within the G.O.D Framework tasked with streamlining and coordinating communication between various modules, workflows, and external systems. It acts as a bridge for seamless interactions across diverse AI systems, APIs, and workflows to ensure efficient data and functionality integration.

Purpose

The primary objectives of this script include:

Key Features

Logic and Implementation

Below is a concise example of how this script enables seamless integration between modules:


import logging
from typing import List, Any, Dict

class UniversalIntegrator:
    """
    A class to orchestrate seamless integrations between diverse modules in the G.O.D Framework.
    """

    def __init__(self, config: Dict[str, Any]):
        """
        Initialize the integrator with a configuration dictionary.

        Args:
            config (Dict[str, Any]): Configuration for module connections and API endpoints.
        """
        self.config = config
        self.logger = logging.getLogger("UniversalIntegrator")
        self.modules = {}

    def register_module(self, module_name: str, module_instance: Any):
        """
        Dynamically register a module for integration.

        Args:
            module_name (str): Module identifier.
            module_instance (Any): Instantiated module or class object.
        """
        self.logger.info(f"Registering module: {module_name}")
        self.modules[module_name] = module_instance

    def execute_workflow(self, workflow_steps: List[str], input_data: Dict[str, Any]):
        """
        Automates the execution of modules in the specified workflow sequence.

        Args:
            workflow_steps (List[str]): Ordered steps representing module names.
            input_data (Dict[str, Any]): Input data required for the workflow.

        Returns:
            Any: Final output of the workflow.
        """
        data = input_data
        for step in workflow_steps:
            if step in self.modules:
                self.logger.info(f"Executing step: {step}")
                data = self.modules[step].run(data)
            else:
                self.logger.error(f"Module not found: {step}")
                raise KeyError(f"Module {step} is not registered.")
        return data

# Example integration of a data module and a model module for inference:
if __name__ == "__main__":
    class DataPreprocessor:
        def run(self, data):
            processed_data = {"processed_data": data["raw_data"] * 2}
            return processed_data

    class ModelPredictor:
        def run(self, data):
            predictions = {"predictions": data["processed_data"] + 1}
            return predictions

    integrator = UniversalIntegrator(config={})
    integrator.register_module("DataPreprocessor", DataPreprocessor())
    integrator.register_module("ModelPredictor", ModelPredictor())

    raw_input = {"raw_data": 5}
    result = integrator.execute_workflow(
        workflow_steps=["DataPreprocessor", "ModelPredictor"],
        input_data=raw_input
    )
    print(result)  # Output: {'predictions': 11}
        

Dependencies

Integration with the G.O.D Framework

The ai_universal_integrator.py script integrates closely with:

Future Enhancements