G.O.D Framework

Script: ai_temporal_being.py

Enabling temporal intelligence for forecasting, trend analysis, and time-series predictions.

Introduction

The ai_temporal_being.py is a sophisticated module within the G.O.D Framework designed to analyze, monitor, and predict time-sensitive datasets. This script leverages temporal AI methodologies to uncover relationships between time-based data points. It drives predictive insights across domains like finance, healthcare, and IoT analytics.

Purpose

The fundamental purposes of this script include:

Key Features

Logic and Implementation

The script uses specialized libraries (e.g., statsmodels, prophet, tensorflow) to build time-series forecasting models. Below is an example workflow:


from statsmodels.tsa.arima.model import ARIMA
import pandas as pd
from matplotlib import pyplot as plt

class TemporalAI:
    """
    Temporal AI for managing time-series trends, forecasting, and anomaly detection.
    """

    def __init__(self, history):
        """
        Initializes a time-series model with provided historical data.

        Args:
            history (pd.Series): A pandas Series containing historical time-series data.
        """
        self.history = history

    def plot_time_series(self):
        """
        Plots the time-series data.
        """
        self.history.plot(title="Time-series Plot")
        plt.show()

    def build_arima_model(self, order=(5, 1, 0)):
        """
        Builds an ARIMA model for the time-series.

        Args:
            order (tuple): Order (p, d, q) configuration for ARIMA.

        Returns:
            ARIMA: The trained ARIMA model.
        """
        model = ARIMA(self.history, order=order)
        fitted_model = model.fit()
        print(f"Model Summary:\n{fitted_model.summary()}")
        return fitted_model

    def forecast(self, steps=10):
        """
        Forecast future values using the ARIMA model.

        Args:
            steps (int): Number of time steps to predict.

        Returns:
            pd.Series: Predicted time-series values.
        """
        model = self.build_arima_model()
        forecast = model.forecast(steps=steps)
        print(f"Forecasted Values: \n{forecast}")
        return forecast

# Example Usage
if __name__ == "__main__":
    # Historical data
    date_rng = pd.date_range(start='2022-01-01', end='2022-12-31', freq='M')
    data = pd.Series([i + (i % 12) for i in range(len(date_rng))], index=date_rng)

    # Initialize TemporalAI
    temp_ai = TemporalAI(data)
    temp_ai.plot_time_series()
    forecast_values = temp_ai.forecast(steps=6)
    print("Predicted Future:", forecast_values)
        

Dependencies

Integration with G.O.D Framework

This script integrates effectively with several other modules in the ecosystem:

Future Enhancements

Planned improvements for the module include: