G.O.D Framework

Script: ai_spark_data_processor.py

Streamlining AI-powered data transformations using Apache Spark for big data processing.

Introduction

The ai_spark_data_processor.py script enables distributed data processing and analytics powered by Apache Spark within the G.O.D Framework. It handles large-scale datasets efficiently, allowing various AI modules to process, transform, and analyze data across clusters. This ensures scalability and performance in big data environments.

Purpose

The primary purposes of this module are:

Key Features

Logic and Implementation

The script relies on PySpark modules for distributed data operations. Below is an implementation example illustrating basic data transformation using PySpark:


from pyspark.sql import SparkSession
from pyspark.sql.functions import col, when

class SparkDataProcessor:
    """
    Module for processing and transforming data using Apache Spark for G.O.D framework usage.
    """

    def __init__(self, app_name="GOD_Spark_Processor"):
        """
        Initialize a Spark Session.

        Args:
            app_name (str): Name of the Spark Application.
        """
        self.spark = SparkSession.builder \
            .appName(app_name) \
            .config("spark.master", "local") \
            .getOrCreate()
        print("Spark session started with app name:", app_name)

    def load_data(self, file_path, format="csv"):
        """
        Load dataset into a Spark DataFrame.

        Args:
            file_path (str): Path to the dataset.
            format (str): Format of the file (csv, parquet, json, etc.).

        Returns:
            DataFrame: Spark DataFrame containing loaded data.
        """
        return self.spark.read.format(format).option("header", "true").load(file_path)

    def process_data(self, df):
        """
        Perform transformations on the dataset.

        Args:
            df (DataFrame): Input Spark DataFrame.

        Returns:
            DataFrame: Transformed Spark DataFrame.
        """
        # Example: Generate a new column based on condition
        transformed_df = df.withColumn("processed_category", when(col("value") > 50, "high").otherwise("low"))
        return transformed_df

    def save_data(self, df, output_path, format="csv"):
        """
        Save the Spark DataFrame to a specified location.

        Args:
            df (DataFrame): The Spark DataFrame to save.
            output_path (str): Target path for the output data.
            format (str): Format to save the data (csv, parquet, json, etc.).
        """
        df.write.format(format).mode("overwrite").save(output_path)

# Example Usage
if __name__ == "__main__":
    processor = SparkDataProcessor()
    df = processor.load_data("data/input_data.csv")
    processed_df = processor.process_data(df)
    processor.save_data(processed_df, "data/output_data.csv")
        

Dependencies

Integration with the G.O.D Framework

This module integrates seamlessly with several other scripts in the framework:

Future Enhancements

Suggested improvements for extending the module's functionality: