G.O.D Framework

Script: ai_self_awareness_module.py

Developing self-reflective systems for adaptive intelligence and resilient decision-making.

Introduction

The ai_self_awareness_module.py introduces an innovative dimension to the G.O.D framework by incorporating systems capable of self-awareness and reflection. This module fosters an AI’s ability to analyze and introspect its own states, actions, and the decisions it makes, vital for adaptive intelligence and sustainable decision-making.

Purpose

This module aims to achieve:

Key Features

Logic and Implementation

The core implementation relies on a combination of logging, state representation, and modeling techniques that track and introspect the AI’s behavior. Below is an example of a class structure for self-awareness augmentation:


import logging
import time

class SelfAwarenessModule:
    """
    Enables self-awareness capabilities in AI systems for introspective reflection and adaptive improvements.
    """
    def __init__(self):
        self.state_log = []
        logging.info("Self-Awareness Module initialized.")

    def record_state(self, state):
        """
        Records the current state and timestamp for introspective analysis.

        Args:
            state (dict): Information about the system's current state.

        Example:
            state = {
                'action': 'decision_made',
                'decision': 'approve_loan',
                'confidence': 0.85,
                'time': time.time()
            }
        """
        try:
            state['timestamp'] = time.time()
            self.state_log.append(state)
            logging.info(f"State recorded: {state}")
        except Exception as e:
            logging.error(f"Error recording state: {e}")

    def analyze_states(self):
        """
        Analyzes the recorded states for patterns, anomalies, or inefficiencies.

        Returns:
            dict: Insights derived from the analysis of recorded states.
        """
        try:
            if not self.state_log:
                logging.warning("No states available for analysis.")
                return {}

            # Example: Calculate average decision confidence
            confidences = [state.get('confidence', 0) for state in self.state_log if 'confidence' in state]
            avg_confidence = sum(confidences) / len(confidences) if confidences else 0

            insights = {
                'total_states': len(self.state_log),
                'average_confidence': avg_confidence,
            }
            logging.info(f"Insights derived: {insights}")
            return insights
        except Exception as e:
            logging.error(f"Error analyzing states: {e}")
            return {}

# Example Usage
if __name__ == "__main__":
    logging.basicConfig(level=logging.INFO)

    # Initialize module
    module = SelfAwarenessModule()

    # Simulate recording AI states
    module.record_state({'action': 'decision_made', 'decision': 'approve_loan', 'confidence': 0.85})
    module.record_state({'action': 'decision_made', 'decision': 'reject_loan', 'confidence': 0.75})

    # Perform analysis
    insights = module.analyze_states()
    print(f"Insights: {insights}")
        

Dependencies

Integration with G.O.D Framework

Future Enhancements