G.O.D Framework

Script: ai_pipeline_audit_logger.py - Ensuring observability of the AI pipeline.

Introduction

The ai_pipeline_audit_logger.py module serves as an integral component of the G.O.D Framework for logging and auditing every activity within the AI data pipeline. It ensures accountability, traceability, and compliance by maintaining an extensive log of all pipeline events and operations.

Purpose

The purpose of this module is to facilitate:

Key Features

Logic and Implementation

The core of ai_pipeline_audit_logger.py is the AuditLogger class, which maintains event logs throughout the pipeline. It uses modular handlers to support logging across different mediums (file system, cloud, etc.).


            import logging
            import json
            from datetime import datetime

            class AuditLogger:
                """
                AI Pipeline Audit Logger: Tracks and logs operations in the pipeline.
                """
                def __init__(self, log_file="pipeline_audit.log"):
                    """
                    Initializes the Audit Logger with a default log file.
                    Args:
                        log_file (str): Path to the log file.
                    """
                    self.log_file = log_file
                    self.logger = logging.getLogger("AuditLogger")
                    self.logger.setLevel(logging.INFO)
                    handler = logging.FileHandler(self.log_file)
                    formatter = logging.Formatter("%(asctime)s - %(levelname)s - %(message)s")
                    handler.setFormatter(formatter)
                    self.logger.addHandler(handler)

                def log_event(self, event_type, details=None):
                    """
                    Logs an event to the audit logger.
                    Args:
                        event_type (str): The type of event (e.g., "DATA_INGESTION", "MODEL_TRAINING").
                        details (dict): Additional metadata about the event.
                    """
                    details = details or {}
                    event_log = {
                        "timestamp": datetime.utcnow().isoformat(),
                        "event_type": event_type,
                        "details": details
                    }
                    self.logger.info(json.dumps(event_log))

                def log_error(self, error_message, error_details=None):
                    """
                    Logs an error event to the audit logger.
                    Args:
                        error_message (str): A descriptive error message.
                        error_details (dict): Additional metadata about the error.
                    """
                    error_details = error_details or {}
                    error_log = {
                        "timestamp": datetime.utcnow().isoformat(),
                        "error_message": error_message,
                        "error_details": error_details
                    }
                    self.logger.error(json.dumps(error_log))

            # Example Usage
            if __name__ == "__main__":
                audit_logger = AuditLogger()
                audit_logger.log_event("DATA_INGESTION", {"dataset": "training_data.csv"})
                audit_logger.log_error("FileNotFoundError", {"file": "missing_file.csv"})
            

Dependencies

The following Python modules are required:

System Integration

The ai_pipeline_audit_logger.py is an essential observability tool that integrates deeply with the G.O.D Framework:

Usage Examples

Developers can leverage this module for real-time pipeline observability. Below is an example for implementing a logging flow:


            from ai_pipeline_audit_logger import AuditLogger

            # Initialize logger
            logger = AuditLogger("pipeline_activity.log")

            # Log pipeline events
            logger.log_event("DATA_TRANSFORMATION", {"stage": "normalize", "file": "train.csv"})

            # In case of errors
            logger.log_error("TransformationError", {"stage": "normalize", "file": "train.csv", "error_code": "404"})
            

Future Enhancements