G.O.D Framework

Script: ai_orchestrator.py - The central AI workflow automation and coordination system.

Introduction

The ai_orchestrator.py module is the backbone of the G.O.D Framework's automation process, facilitating the coordination, management, and synchronization of AI models, processes, and systems. It ensures seamless interactions between components and enables effective workflow execution.

Purpose

The aim of the ai_orchestrator.py module is to:

Key Features

Logic and Implementation

The module leverages a task queue system to orchestrate workflows dynamically. It monitors task execution states and ensures that upstream dependencies are resolved before downstream processes proceed.


            from queue import Queue
            import time

            class Task:
                """
                Represents a single task in the orchestration workflow.
                """
                def __init__(self, name, dependencies=None):
                    self.name = name
                    self.dependencies = dependencies or []
                    self.completed = False

                def execute(self):
                    """
                    Simulate task execution.
                    """
                    print(f"Executing task: {self.name}")
                    self.completed = True

            class Orchestrator:
                """
                A class to manage and execute workflows.
                """
                def __init__(self):
                    self.tasks = {}
                    self.execution_queue = Queue()

                def add_task(self, task):
                    """
                    Add a task to the orchestrator.
                    """
                    self.tasks[task.name] = task
                    print(f"Added task: {task.name}")

                def resolve_dependencies(self, task_name):
                    """
                    Check if all dependencies for a task are resolved.
                    """
                    task = self.tasks[task_name]
                    return all(self.tasks[dep].completed for dep in task.dependencies)

                def start(self):
                    """
                    Start executing the workflow.
                    """
                    print("Starting orchestration...")
                    for task_name, task in self.tasks.items():
                        if not task.dependencies:
                            self.execution_queue.put(task)

                    while not self.execution_queue.empty():
                        task = self.execution_queue.get()
                        if task.completed:
                            continue

                        if self.resolve_dependencies(task.name):
                            task.execute()
                            for dependent_task_name, dependent_task in self.tasks.items():
                                if task.name in dependent_task.dependencies and self.resolve_dependencies(dependent_task_name):
                                    self.execution_queue.put(dependent_task)

            # Example Workflow
            if __name__ == "__main__":
                orchestrator = Orchestrator()

                # Define tasks
                task1 = Task("Data Ingestion")
                task2 = Task("Data Preparation", dependencies=["Data Ingestion"])
                task3 = Task("Model Training", dependencies=["Data Preparation"])
                task4 = Task("Model Deployment", dependencies=["Model Training"])

                # Add tasks to orchestrator
                orchestrator.add_task(task1)
                orchestrator.add_task(task2)
                orchestrator.add_task(task3)
                orchestrator.add_task(task4)

                # Start the orchestration process
                orchestrator.start()
            

Dependencies

Usage

This module can be used to define and execute complex AI workflows, manage task dependencies, and dynamically allocate resources. Example:


            # Create an orchestrator instance
            orchestrator = Orchestrator()

            # Add tasks with dependencies
            orchestrator.add_task(Task("Data Collection"))
            orchestrator.add_task(Task("Preprocessing", dependencies=["Data Collection"]))

            # Start orchestrating workflows
            orchestrator.start()
            

System Integration

The ai_orchestrator.py integrates seamlessly within the G.O.D Framework. Some key integration points include:

Future Enhancements