G.O.D Framework

Script: ai_offline_support.py - A module for AI-driven offline capabilities in applications.

Introduction

The ai_offline_support.py is a vital module in the G.O.D Framework that enables AI models and applications to function seamlessly in offline environments. By adapting resources and preloading necessary data, this module ensures uninterrupted functionality even without internet connectivity.

Purpose

The primary purpose of the ai_offline_support.py module is to:

Key Features

Logic and Implementation

The module enables offline support for AI-powered systems by caching data and loading lightweight, pre-trained machine learning models. It can identify offline mode requirements dynamically and adapt by avoiding external APIs and services.


            import os
            import pickle

            class OfflineSupport:
                """
                A class providing offline mode capabilities for AI applications.
                """

                def __init__(self, cache_dir="offline_cache"):
                    self.cache_dir = cache_dir
                    if not os.path.exists(self.cache_dir):
                        os.makedirs(self.cache_dir)
                    print(f"Offline cache initialized at: {self.cache_dir}")

                def cache_model(self, model, model_name):
                    """
                    Save a pre-trained model in the offline cache for reuse.
                    """
                    model_path = os.path.join(self.cache_dir, f"{model_name}.pkl")
                    with open(model_path, "wb") as file:
                        pickle.dump(model, file)
                    print(f"Model '{model_name}' cached successfully.")

                def load_cached_model(self, model_name):
                    """
                    Load a previously cached model.
                    """
                    model_path = os.path.join(self.cache_dir, f"{model_name}.pkl")
                    if not os.path.exists(model_path):
                        raise FileNotFoundError(f"Model '{model_name}' not found in cache.")
                    with open(model_path, "rb") as file:
                        model = pickle.load(file)
                    print(f"Model '{model_name}' loaded successfully.")
                    return model

            # Example Usage
            if __name__ == "__main__":
                offline_support = OfflineSupport()

                # Cache a simple dictionary (as a placeholder for a model)
                model = {"weights": [0.1, 0.2, 0.3], "model_type": "example"}
                offline_support.cache_model(model, model_name="example_model")

                # Load the cached model
                loaded_model = offline_support.load_cached_model("example_model")
                print(f"Loaded Model Data: {loaded_model}")
            

Dependencies

Usage

The module can be used to store data or models in offline cache and retrieve them when needed:


            # Initialize offline support
            offline_support = OfflineSupport()

            # Save a pre-trained model object into cache
            model_data = {"architecture": "ConvNet", "weights": [0.1, 0.5, 0.8]}
            offline_support.cache_model(model_data, "convnet_model")

            # Load the cached model
            loaded_model = offline_support.load_cached_model("convnet_model")
            

System Integration

The ai_offline_support.py module integrates seamlessly within the G.O.D Framework to:

Future Enhancements