G.O.D Framework

Script: ai_model_export.py - A module to export trained AI models for deployment

Introduction

The ai_model_export.py script is a utility designed to handle the export and serialization of trained machine learning models into formats suitable for deployment and integration into various systems. By exporting models, they become accessible to production services, APIs, or edge devices seamlessly. This script supports multiple frameworks and storage formats to ensure compatibility across a variety of environments.

Purpose

The core objectives of the ai_model_export.py script include:

Key Features

Logic and Implementation

The script relies on serialization libraries like pickle, joblib, and external libraries like onnx for exporting models. It also handles saving TensorFlow/Keras and PyTorch models using their respective APIs. Version control ensures exported models can be tracked, and cloud integration allows seamless handling of large-scale model deployment pipelines.


            import pickle
            import joblib
            import os
            from sklearn.externals import joblib
            import onnx
            import onnxruntime as ort

            class ModelExporter:
                """
                A utility for exporting trained machine learning models.
                """

                def __init__(self, directory="exported_models", versioning=True):
                    self.directory = directory
                    self.versioning = versioning
                    os.makedirs(self.directory, exist_ok=True)

                def export(self, model, format="pickle", model_name="model"):
                    """
                    Export the model in the specified format.
                    """
                    assert format in ["pickle", "joblib", "onnx", "tensorflow"], "Unsupported format!"

                    version = ""
                    if self.versioning:
                        version = "_v1"  # For demonstration, implement proper version tracking.

                    filepath = os.path.join(self.directory, f"{model_name}{version}.{format}")

                    if format == "pickle":
                        with open(filepath, "wb") as f:
                            pickle.dump(model, f)
                    elif format == "joblib":
                        joblib.dump(model, filepath)
                    elif format == "onnx":
                        assert hasattr(model, "onnx_export"), "Model must support ONNX export!"
                        model.onnx_export(filepath)
                    elif format == "tensorflow":
                        assert hasattr(model, "save"), "Model must support TensorFlow save!"
                        model.save(filepath)

                    print(f"Model exported to {filepath}")
                    return filepath

            # Example Usage
            if __name__ == "__main__":
                from sklearn.ensemble import RandomForestClassifier
                from sklearn.datasets import load_iris

                # Train Model
                iris = load_iris()
                X, y = iris.data, iris.target
                model = RandomForestClassifier()
                model.fit(X, y)

                # Initialize Exporter
                exporter = ModelExporter()

                # Export the model in pickle format
                exporter.export(model, format="pickle", model_name="random_forest_iris")
            

Dependencies

Usage

The ai_model_export.py script can be used to export models in different formats depending on deployment needs. Users can modify the export directory and version control flags in the ModelExporter class for their specific requirements.


            # Example usage to export a trained scikit-learn model:
            exporter = ModelExporter(directory="models", versioning=True)
            exporter.export(model, format="joblib", model_name="linear_classifier")
            

System Integration

Future Enhancements