G.O.D Framework

Script: ai_model_ensembler.py - Combining predictions for enhanced model performance

Introduction

The ai_model_ensembler.py script is designed to implement ensemble learning methods to combine predictions from multiple models. Ensemble learning is a powerful machine learning technique that improves accuracy and robustness by combining predictions from several weaker models.

This script provides functionality for bagging, boosting, stacking, and other ensemble methods, ensuring scalable and high-performance predictive systems within the G.O.D framework.

Purpose

The main objectives of the ai_model_ensembler.py include:

Key Features

Logic and Implementation

The script primarily revolves around utilizing combinations of base machine learning models in an ensemble structure. Bagging models work in parallel to reduce variance, boosting sequences minimize bias, and stacking leverages meta-learners to synthesize predictions optimally.


            from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier
            from sklearn.linear_model import LogisticRegression
            from sklearn.base import BaseEstimator, ClassifierMixin
            import numpy as np

            class StackingEnsembler(BaseEstimator, ClassifierMixin):
                """
                Custom stacking ensemble implementation.
                """

                def __init__(self, base_models, meta_model):
                    self.base_models = base_models  # List of base learners
                    self.meta_model = meta_model    # Meta-learner for stacking

                def fit(self, X, y):
                    """
                    Fit base models and meta-model.
                    """
                    self.base_models_ = [model.fit(X, y) for model in self.base_models]
                    base_predictions = np.column_stack([model.predict(X) for model in self.base_models_])
                    self.meta_model_ = self.meta_model.fit(base_predictions, y)
                    return self

                def predict(self, X):
                    """
                    Generate stacked predictions.
                    """
                    base_predictions = np.column_stack([model.predict(X) for model in self.base_models_])
                    return self.meta_model_.predict(base_predictions)

            # Example Usage
            if __name__ == "__main__":
                from sklearn.datasets import make_classification
                from sklearn.model_selection import train_test_split
                from sklearn.metrics import accuracy_score

                # Generate synthetic data
                X, y = make_classification(n_samples=1000, n_features=20, n_informative=15, n_classes=2)
                X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)

                # Initialize base models and meta-model
                base_models = [RandomForestClassifier(), GradientBoostingClassifier()]
                meta_model = LogisticRegression()

                # Build and train the stacking ensemble
                ensemble = StackingEnsembler(base_models, meta_model)
                ensemble.fit(X_train, y_train)

                # Evaluate the ensemble
                predictions = ensemble.predict(X_test)
                print(f"Ensemble Accuracy: {accuracy_score(y_test, predictions):.2f}")
            

Dependencies

Usage

The ai_model_ensembler.py script can be directly used to create and train ensemble models, as demonstrated in the example above. Utilize the class StackingEnsembler or extend it for custom ensemble functionalities.


            from ai_model_ensembler import StackingEnsembler
            from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier
            from sklearn.linear_model import LogisticRegression

            # Example: Creating a stacking ensemble
            base_models = [RandomForestClassifier(), GradientBoostingClassifier()]
            meta_model = LogisticRegression()

            ensemble = StackingEnsembler(base_models, meta_model)
            ensemble.fit(X_train, y_train)
            predictions = ensemble.predict(X_test)
            

System Integration

Future Enhancements