G.O.D Framework

Script: ai_intuition.py - Enhanced Neural Intuition for Complex Problem Solving

Introduction

The ai_intuition.py script utilizes advanced neural network architectures to provide "intuitive" decisions for complex AI tasks. It mimics human intuition by leveraging deep feature representations and unsupervised learning techniques to find patterns in high-dimensional data.

This script is designed to handle scenarios where traditional logic fails or when decision-making needs to occur in ambiguous environments. AI Intuition plays a critical role in providing insights and suggestions that go beyond simple rule-based systems.

Purpose

Key Features

Logic and Implementation

The AI Intuition engine relies on neural embeddings and clustering mechanisms to process input data and generate predictions. Below is a high-level implementation outline:


            import tensorflow as tf
            from sklearn.cluster import KMeans
            import numpy as np

            class AIIntuition:
                """
                Neural-based system for intuitive decision-making and clustering.
                """
                def __init__(self, input_dim, model_path=None):
                    """
                    Initialize the intuition engine.
                    :param input_dim: Dimensionality of input data.
                    :param model_path: (Optional) Path to a pre-trained model for feature extraction.
                    """
                    self.input_dim = input_dim
                    self.model = self.build_model() if model_path is None else tf.keras.models.load_model(model_path)

                def build_model(self):
                    """
                    Build a feature extraction neural network.
                    :return: Compiled TensorFlow model.
                    """
                    model = tf.keras.Sequential([
                        tf.keras.layers.InputLayer(input_shape=(self.input_dim,)),
                        tf.keras.layers.Dense(128, activation="relu"),
                        tf.keras.layers.Dropout(0.3),
                        tf.keras.layers.Dense(64, activation="relu"),
                        tf.keras.layers.Dense(32, activation="relu"),
                        tf.keras.layers.Dense(16, activation="relu")
                    ])
                    model.compile(optimizer="adam", loss="mse")
                    return model

                def infer_embeddings(self, data):
                    """
                    Generate neural embeddings from input data.
                    :param data: Input data for which embeddings need to be generated.
                    :return: Embeddings as numpy array.
                    """
                    data = np.array(data).reshape(-1, self.input_dim)
                    embeddings = self.model.predict(data)
                    return embeddings

                def cluster_embeddings(self, embeddings, n_clusters=3):
                    """
                    Cluster embeddings for intuitive pattern recognition.
                    :param embeddings: Neural embeddings for data.
                    :param n_clusters: Number of clusters.
                    :return: Cluster labels.
                    """
                    kmeans = KMeans(n_clusters=n_clusters, random_state=42)
                    clusters = kmeans.fit_predict(embeddings)
                    return clusters

                def generate_intuition(self, data, n_clusters=3):
                    """
                    Generate intuitive predictions for input data.
                    :param data: Input data.
                    :param n_clusters: Number of clusters.
                    :return: Intuitive decisions or patterns.
                    """
                    embeddings = self.infer_embeddings(data)
                    clusters = self.cluster_embeddings(embeddings, n_clusters)
                    return clusters

            # Example usage
            if __name__ == "__main__":
                input_data = [[0.1, 0.2, 0.3], [0.4, 0.5, 0.6], [0.7, 0.8, 0.9]]
                engine = AIIntuition(input_dim=3)
                intuition = engine.generate_intuition(input_data, n_clusters=2)
                print("Intuitive Decisions (Clusters):", intuition)
            

Dependencies

Usage

The AIIntuition class provides an easy-to-use interface for processing data into intuitive predictions. Here’s a summary of usage:


            # Initialize AI Intuition engine
            ai_intuition = AIIntuition(input_dim=10)

            # Input data for prediction
            raw_input = [[0.1, 0.5, 0.9, 0.3, 0.2, 0.7, 0.8, 0.4, 0.6, 0.1]]

            # Generate intuitive clusters
            predictions = ai_intuition.generate_intuition(raw_input, n_clusters=3)
            print("Intuitive Groups:", predictions)
            

System Integration

Future Enhancements