G.O.D Framework

Script: ai_interface_perdiction.py - AI Model Prediction for APIs and Interfaces

Introduction

The ai_interface_perdiction.py module bridges AI models with user-facing interfaces by enabling real-time or batch prediction. It supports integrating machine learning models into RESTful APIs, UI components, or automated systems seamlessly. The purpose is to allow system interfaces to directly fetch predictive insights from AI models.

The module implements robust, lightweight, and scalable prediction mechanisms that handle data preparation, error handling, and response formatting. With extensibility in mind, this module is designed to allow rapid inclusion of multiple ML models into production workflows.

Purpose

Key Features

Logic and Implementation

This script provides a centralized prediction handler for ML models. Below is a conceptual implementation:


            import joblib
            import numpy as np
            import os
            import logging

            class InterfacePrediction:
                """
                AI Interface Prediction layer for ML/DL workflows.
                """
                def __init__(self, model_path="models/model.pkl"):
                    """
                    Initialize the predictor.
                    :param model_path: Path to the serialized ML/DL model.
                    """
                    if not os.path.exists(model_path):
                        raise FileNotFoundError(f"Model file not found at {model_path}")

                    self.model = joblib.load(model_path)
                    logging.info("[INFO] Model loaded successfully.")

                def preprocess_input(self, data):
                    """
                    Preprocess input data into the format expected by the model.
                    :param data: Raw input data for the model.
                    :return: Preprocessed data.
                    """
                    try:
                        # Example: Ensure input is a numpy array
                        processed_data = np.array(data, dtype=np.float32)
                        return processed_data
                    except Exception as e:
                        logging.error("[ERROR] Preprocessing failed: " + str(e))
                        raise ValueError("Invalid input data format.")

                def predict(self, data):
                    """
                    Use the model to make predictions on the provided data.
                    :param data: Input data for prediction.
                    :return: Model predictions.
                    """
                    data = self.preprocess_input(data)
                    predictions = self.model.predict(data)

                    # Format predictions (example: Convert to list for easier serialization)
                    return predictions.tolist()

                def batch_predict(self, batch_data):
                    """
                    Batch prediction for multiple examples.
                    :param batch_data: List of input datasets for prediction.
                    :return: List of predictions for all inputs.
                    """
                    try:
                        batch_predictions = [self.predict(data) for data in batch_data]
                        return batch_predictions
                    except Exception as e:
                        logging.error("[ERROR] Batch prediction failed: " + str(e))
                        return {"error": "Batch prediction failed. Check input data."}

            # Example Usage
            if __name__ == "__main__":
                predictor = InterfacePrediction(model_path="models/model.pkl")

                # Single prediction
                input_data = [5.1, 3.5, 1.4, 0.2]  # Example input
                single_prediction = predictor.predict(input_data)
                print("Single Prediction:", single_prediction)

                # Batch prediction
                batch_data = [[5.1, 3.5, 1.4, 0.2], [6.2, 3.2, 4.7, 1.4]]
                batch_predictions = predictor.batch_predict(batch_data)
                print("Batch Predictions:", batch_predictions)
            

Dependencies

Usage

The InterfacePrediction class is designed to simplify integrating AI-generated predictions into APIs, dashboards, or command-line scripts. Below is a usage example:


            # Initialize the predictor
            predictor = InterfacePrediction(model_path="models/iris_model.pkl")

            # Perform a single prediction
            print(predictor.predict([6.0, 3.0, 4.8, 1.8]))

            # Perform batch predictions
            print(predictor.batch_predict([[6.0, 3.0, 4.8, 1.8], [5.4, 3.9, 1.7, 0.4]]))
            

System Integration

Future Enhancements