G.O.D Framework

Script: ai_inference_service.py - API and Middleware for Serving AI Model Inferences

Introduction

The ai_inference_service.py module provides a comprehensive API layer for serving and managing AI/ML model inferences efficiently. It acts as middleware, connecting machine learning models to client-facing applications while optimizing request flow, managing concurrency, and ensuring reliability.

This service offers RESTful APIs for synchronous inferences and queuing-based solutions for asynchronous processing. Additional features include input validation, output formatting, and monitoring hooks for tracking inference activity.

Purpose

Key Features

Logic and Implementation

The core implementation leverages a lightweight API framework to handle HTTP requests while offloading inference tasks to models running in optimized backends. Here’s a simplified example:


            from flask import Flask, request, jsonify
            import queue
            import threading
            import time

            app = Flask(__name__)

            class InferenceService:
                """
                Simplified middleware for serving model inferences via REST API.
                """

                def __init__(self, model):
                    """
                    Initialize the service.
                    :param model: Pre-trained AI model for inference.
                    """
                    self.model = model
                    self.lock = threading.Lock()

                def infer(self, data):
                    """
                    Run inference on incoming data.
                    :param data: JSON-formatted input data.
                    :return: Predicted result.
                    """
                    with self.lock:  # Ensure thread-safe inference
                        result = self.model.predict(data)
                        return result

            # Dummy example model
            class DummyModel:
                def predict(self, input_data):
                    time.sleep(0.1)  # Simulating inference delay
                    return {"prediction": sum(input_data)}

            # Initialize Service
            model = DummyModel()
            service = InferenceService(model)

            @app.route('/infer', methods=['POST'])
            def infer():
                """
                API endpoint to accept inference requests.
                """
                input_data = request.json
                if not input_data or "data" not in input_data:
                    return jsonify({"error": "Invalid input format"}), 400

                prediction = service.infer(input_data["data"])
                return jsonify({"prediction": prediction})

            if __name__ == "__main__":
                app.run(host="0.0.0.0", port=5000)
            

Dependencies

Below are the key dependencies for this module:

Usage

To serve an AI model using ai_inference_service.py, configure your model and instantiate the InferenceService class. Then create API endpoints to wrap the inference logic.


            from ai_inference_service import InferenceService

            # Initialize service with your model
            my_model = CustomModel()  # Replace with your actual model
            service = InferenceService(my_model)

            # Handle APIs (with Flask or other frameworks)
            @app.route('/predict', methods=['POST'])
            def predict():
                input_data = request.json["data"]
                result = service.infer(input_data)
                return jsonify(result)
            

System Integration

Future Enhancements