G.O.D Framework

Script: ai_error_tracker.py - Comprehensive Error Management for Robust AI Systems

Introduction

The ai_error_tracker.py module is a centralized error tracking and logging component designed for real-time debugging and fault management in AI systems. It ensures that exceptions and errors do not disrupt the AI system's critical workflow and promotes stability through efficient error recovery mechanisms.

This module is vital in large-scale AI deployments to monitor and log exceptions, whether they occur during model inference, data pipeline processes, or user interaction handling.

Purpose

Key Features

Logic and Implementation

At its core, the ai_error_tracker.py module acts as a lightweight microservice that interacts with other components to track and log errors using a structured format. It employs severity-level tagging (INFO, WARNING, ERROR, CRITICAL) to prioritize issues effectively. For debugging, it retrieves stack traces and error metadata to provide actionable insights.

An illustrative implementation of this module:


            import logging
            from datetime import datetime

            class ErrorTracker:
                """
                Centralized Error Tracker for the G.O.D Framework.
                Logs errors and sends alerts based on severity levels.
                """

                def __init__(self, log_file="error_logs.log"):
                    self.logger = logging.getLogger("ErrorTracker")
                    self.logger.setLevel(logging.DEBUG)

                    # File Handler
                    file_handler = logging.FileHandler(log_file)
                    file_handler.setLevel(logging.DEBUG)

                    # Formatter
                    formatter = logging.Formatter(
                        '%(asctime)s - %(levelname)s - %(message)s'
                    )
                    file_handler.setFormatter(formatter)

                    self.logger.addHandler(file_handler)

                def log_error(self, error_message, severity="ERROR"):
                    """
                    Log an error message with a specified severity level.
                    :param error_message: The error message to log.
                    :param severity: The severity level (INFO, WARNING, ERROR, CRITICAL).
                    """
                    if severity == "INFO":
                        self.logger.info(error_message)
                    elif severity == "WARNING":
                        self.logger.warning(error_message)
                    elif severity == "CRITICAL":
                        self.logger.critical(error_message, exc_info=True)
                    else:
                        self.logger.error(error_message, exc_info=True)

                def send_alert(self, message):
                    """
                    Placeholder for sending alerts via email or webhook.
                    :param message: Critical alert message.
                    """
                    print(f"ALERT: {message} (Integration pending)")

            if __name__ == "__main__":
                tracker = ErrorTracker()
                try:
                    raise ValueError("Example error for testing")
                except ValueError as e:
                    tracker.log_error(f"ValueError occurred: {str(e)}", severity="CRITICAL")
                    tracker.send_alert("Critical issue detected in AI system")
            

Dependencies

The module employs the following libraries and integrations:

Usage

This module is best suited for tracking runtime errors both locally and during production deployments. Basic usage involves:

  1. Initialize the ErrorTracker class with a filepath for the error log.
  2. Log errors using log_error() at appropriate severity levels.
  3. Implement notification handling through send_alert().

            tracker = ErrorTracker("app_error_logs.log")
            try:
                # Sample Faulty Code
                1 / 0
            except ZeroDivisionError as e:
                tracker.log_error(f"Critical fault: {e}", severity="CRITICAL")
                tracker.send_alert("Division by zero in main pipeline.")
            

System Integration

Future Enhancements