G.O.D. Framework

Script: ai_emotion_analyzer.py - Sentiment and Emotional Intelligence Analysis

Introduction

The ai_emotion_analyzer.py module is a core component of the G.O.D Framework, specializing in detecting and analyzing emotional contexts from textual, visual, or audio inputs. Incorporating state-of-the-art sentiment analysis and emotional intelligence models, this module enables downstream AI tools to dynamically adapt based on user emotions.

This tool is designed for applications in human-computer interaction, content moderation, customer sentiment tracking, and AI personalization.

Purpose

Key Features

Logic and Implementation

The ai_emotion_analyzer.py script integrates pre-trained sentiment and emotion classification models to infer emotions from input data. For textual inputs, the module uses transformers like BERT or RoBERTa. For visual and audio modalities, the system employs CNN-based facial recognition or speech emotion recognition models.


            from transformers import pipeline
            import librosa
            import numpy as np

            class EmotionAnalyzer:
                """
                Multi-modal Emotion Analyzer for Text, Audio, and Visual inputs.
                """

                def __init__(self, model="bert-base-uncased"):
                    """
                    Initialize the emotion analysis pipeline using a pretrained text sentiment model.
                    :param model: Pre-trained transformer model for text processing.
                    """
                    self.text_analyzer = pipeline("sentiment-analysis", model=model)
                    # Placeholder for future visual/audio processors
                    self.audio_model = None  # e.g., Pre-trained speech emotion model
                    self.visual_model = None  # e.g., CNN model for facial expressions

                def analyze_text(self, text):
                    """
                    Perform sentiment and emotion analysis for input text.
                    :param text: Input text or document.
                    :return: Sentiment label and confidence score.
                    """
                    result = self.text_analyzer(text)
                    return result

                def analyze_audio(self, audio_path):
                    """
                    Analyze emotional tone in audio data (e.g., speech).
                    :param audio_path: Path to the audio file.
                    :return: Emotion label and confidence score.
                    """
                    # Placeholder for speech emotion analysis (e.g., librosa + pre-trained model)
                    y, sr = librosa.load(audio_path)
                    mfccs = np.mean(librosa.feature.mfcc(y=y, sr=sr).T, axis=0)
                    # Forward pass through a custom speech emotion model
                    # For now, return placeholder
                    return {"emotion": "neutral", "confidence": 0.8}

            if __name__ == "__main__":
                analyzer = EmotionAnalyzer()
                text_result = analyzer.analyze_text("I am so happy to use this AI framework!")
                print("Text Analysis Result:", text_result)

                # Audio processing example
                # audio_result = analyzer.analyze_audio("path_to_audio.mp3")
                # print("Audio Analysis Result:", audio_result)
            

Dependencies

The module relies on the following key libraries:

Usage

The ai_emotion_analyzer.py module provides straightforward APIs for processing text, audio, or multi-modal inputs:

  1. Import and initialize the EmotionAnalyzer class.
  2. Use analyze_text() for textual emotion/sentiment analysis.
  3. Integrate analyze_audio() once a custom model is employed for speech input.

            # Example Usage
            analyzer = EmotionAnalyzer()
            sentiment = analyzer.analyze_text("The product has exceeded my expectations!")
            print("Sentiment Analysis Result:", sentiment)
            

System Integration

Future Enhancements