G.O.D. Framework

Script: ai_edge_case_handling.py - Adaptive AI Exception and Edge Case Resolution

Introduction

The ai_edge_case_handling.py module focuses on detecting, logging, and handling edge cases or anomalies within AI systems. Edge cases—unexpected or rare behaviors—often challenge AI models during real-world deployment. This module empowers the G.O.D Framework to gracefully resolve such cases, ensuring robustness under diverse operating conditions.

Its primary aim is to predict, contain, and minimize disruptions when handling rare behaviors, safeguarding reliability and user trust.

Purpose

Key Features

Logic and Implementation

The ai_edge_case_handling.py script uses a combination of statistical detection and rule-based interventions. It integrates with monitoring systems to extract real-time data and identify deviations. Once an edge case is identified, the system resolves it by either applying correction rules, activating a fallback, or triggering a self-healing routine.

An example implementation of the module is as follows:


            import numpy as np
            import logging

            class EdgeCaseHandler:
                """
                This class handles rare, edge-case scenarios during AI model inference or data processing pipelines.
                """

                def __init__(self, threshold=3.0):
                    """
                    Initialize the handler with a threshold for anomaly detection.
                    :param threshold: Number of standard deviations to classify anomalies.
                    """
                    self.threshold = threshold
                    self.logger = self.setup_logger()

                def setup_logger(self):
                    """
                    Configure logging for edge cases.
                    """
                    logger = logging.getLogger("EdgeCaseHandler")
                    handler = logging.StreamHandler()
                    formatter = logging.Formatter('%(asctime)s - %(levelname)s - %(message)s')
                    handler.setFormatter(formatter)
                    logger.addHandler(handler)
                    logger.setLevel(logging.INFO)
                    return logger

                def detect_outliers(self, data):
                    """
                    Detect outliers in an input dataset using standard deviation.
                    :param data: List or NumPy array of data points.
                    :return: List of indices for detected outliers.
                    """
                    mean, std = np.mean(data), np.std(data)
                    outliers = [i for i, x in enumerate(data) if abs(x - mean) > self.threshold * std]
                    if outliers:
                        self.logger.warning(f"Detected outliers: {outliers}")
                    return outliers

                def handle_edge_case(self, case_id, recovery_action="log"):
                    """
                    Perform a recovery action for the given edge case.
                    :param case_id: Unique identifier for the edge case.
                    :param recovery_action: Action to take. Options: "log", "notify", "fallback".
                    """
                    if recovery_action == "log":
                        self.logger.error(f"[Edge Case ID: {case_id}] Logged and flagged")
                    elif recovery_action == "notify":
                        self.logger.info(f"[Edge Case ID: {case_id}] Sent notification to administrator")
                    elif recovery_action == "fallback":
                        self.logger.critical(f"[Edge Case ID: {case_id}] Activated fallback mechanism!")
                    else:
                        self.logger.error(f"Invalid action for case {case_id}")

            if __name__ == "__main__":
                handler = EdgeCaseHandler(threshold=2.5)
                data = [10, 12, 14, 11, 20, 100, 15]
                print("Anomalies:", handler.detect_outliers(data))
                handler.handle_edge_case(case_id=1, recovery_action="fallback")
            

Dependencies

This module relies on the following libraries:

Usage

The module can be used to proactively handle edge cases and anomalies in various scenarios. Key usage steps include:

  1. Initialize the EdgeCaseHandler class.
  2. Feed input data to detect_outliers() to identify anomalies.
  3. Use handle_edge_case() to execute specific mitigation strategies where necessary.

            handler = EdgeCaseHandler(threshold=3.0)
            anomalies = handler.detect_outliers([10, 12, 300, 11, 13])
            handler.handle_edge_case(case_id=42, recovery_action="notify")
            

System Integration

Future Enhancements