G.O.D. Framework

Script: ai_data_privacy_manager.py - Managing Data Privacy and Compliance

Introduction

ai_data_privacy_manager.py focuses on ensuring data privacy compliance within the G.O.D. Framework. It provides tools to mask, secure, and audit user data, making the system compliant with regulatory requirements such as GDPR, CCPA, and HIPAA.

Purpose

Key Features

Logic and Implementation

The script integrates essential data privacy techniques through a modular approach. Below is an example:


            import logging
            from cryptography.fernet import Fernet
            import pandas as pd

            class DataPrivacyManager:
                def __init__(self, encryption_key):
                    """
                    Initializes the DataPrivacyManager with an encryption key.
                    :param encryption_key: Key used for securing sensitive data.
                    """
                    self.cipher = Fernet(encryption_key)

                def mask_data(self, dataframe, columns):
                    """
                    Mask sensitive data by replacing values with masked equivalents.
                    :param dataframe: Input Pandas DataFrame.
                    :param columns: List of columns to mask.
                    """
                    for col in columns:
                        dataframe[col] = dataframe[col].apply(lambda x: '***MASKED***' if pd.notna(x) else x)
                    return dataframe

                def encrypt_data(self, text):
                    """
                    Encrypt sensitive text data.
                    :param text: String data to be encrypted.
                    :return: Encrypted data in byte format.
                    """
                    return self.cipher.encrypt(text.encode())

                def decrypt_data(self, encrypted_text):
                    """
                    Decrypt previously encrypted text data.
                    :param encrypted_text: Encrypted data in byte format.
                    :return: Decrypted string.
                    """
                    return self.cipher.decrypt(encrypted_text).decode()

                def log_data_access(self, action, user, data_id):
                    """
                    Log user actions related to sensitive data.
                    :param action: Action performed (e.g., "read", "modify").
                    :param user: User performing the action.
                    :param data_id: Identifier for the accessed data.
                    """
                    logging.info(f"User '{user}' performed '{action}' on data ID '{data_id}'.")

            if __name__ == "__main__":
                # Example usage
                encryption_key = Fernet.generate_key()
                privacy_manager = DataPrivacyManager(encryption_key)

                # Mock dataset
                df = pd.DataFrame({
                    'Name': ['Alice', 'Bob', 'Charlie'],
                    'SSN': ['123-45-6789', '987-65-4321', '111-22-3333']
                })
                print("Original Data:")
                print(df)

                # Mask the SSN column
                masked_df = privacy_manager.mask_data(df, columns=['SSN'])
                print("\nMasked Data:")
                print(masked_df)

                # Encrypt and decrypt a sample text
                encrypted_ssn = privacy_manager.encrypt_data('123-45-6789')
                print("\nEncrypted SSN:", encrypted_ssn)
                decrypted_ssn = privacy_manager.decrypt_data(encrypted_ssn)
                print("Decrypted SSN:", decrypted_ssn)
            

Dependencies

This script relies on the following libraries:

How to Use This Script

To deploy ai_data_privacy_manager.py, follow these steps:

  1. Provide an encryption key (can be generated using cryptographic tools).
  2. Identify sensitive columns in the dataset that require masking or encryption.
  3. Implement access management as per project requirements to restrict access to sensitive data.
  4. Run the script and monitor audit logs for compliance tracking.

            # Example Usage
            from ai_data_privacy_manager import DataPrivacyManager

            key = Fernet.generate_key()
            manager = DataPrivacyManager(key)

            # Encrypt and decrypt example
            text = "Sensitive Information"
            encrypted = manager.encrypt_data(text)
            print("Encrypted:", encrypted)
            decrypted = manager.decrypt_data(encrypted)
            print("Decrypted:", decrypted)
            

Role in the G.O.D. Framework

Future Enhancements