G.O.D. Framework

Script: ai_data_balancer.py - Ensuring Balanced Datasets for Training

Introduction

The ai_data_balancer.py script is responsible for ensuring that datasets are well-balanced before they are fed into machine learning models. Balancing datasets is crucial in rectifying issues caused by class imbalances, such as biased predictions or reduced model performance on minority classes.

Purpose

Key Features

Logic and Implementation

The ai_data_balancer.py module preprocesses datasets by analyzing class distribution and applying data resampling techniques to ensure balance. The process follows these steps:

  1. Analyze dataset and calculate class distributions.
  2. Select a balancing method: oversampling, undersampling, or hybrid.
  3. Transform the dataset based on the chosen method.
  4. Return the balanced dataset for subsequent use in training or validation.

            from imblearn.over_sampling import SMOTE
            from imblearn.under_sampling import RandomUnderSampler
            from imblearn.combine import SMOTEENN
            import numpy as np
            import pandas as pd

            class DataBalancer:
                def __init__(self, method="smote"):
                    """
                    Initialize the dataset balancer with the chosen method.
                    :param method: The resampling method ('smote', 'undersample', 'hybrid').
                    """
                    self.method = method

                def balance_data(self, X, y):
                    """
                    Balances the dataset using the specified method.
                    :param X: Feature matrix (numpy array or pandas DataFrame).
                    :param y: Target vector (numpy array or pandas Series).
                    :return: Balanced feature matrix and target vector.
                    """
                    if self.method == "smote":
                        sampler = SMOTE()
                    elif self.method == "undersample":
                        sampler = RandomUnderSampler()
                    elif self.method == "hybrid":
                        sampler = SMOTEENN()
                    else:
                        raise ValueError("Invalid method. Choose 'smote', 'undersample', or 'hybrid'.")

                    X_resampled, y_resampled = sampler.fit_resample(X, y)
                    return X_resampled, y_resampled

            if __name__ == "__main__":
                # Example dataset
                X = np.array([[i] for i in range(100)])
                y = np.array([0] * 90 + [1] * 10)  # Imbalanced target vector

                # Balance the data
                balancer = DataBalancer(method="smote")
                X_balanced, y_balanced = balancer.balance_data(X, y)

                print("Original class distribution:", dict(pd.Series(y).value_counts()))
                print("Balanced class distribution:", dict(pd.Series(y_balanced).value_counts()))
            

Dependencies

This script relies on the following external Python libraries:

How to Use This Script

  1. Install necessary libraries using pip install imbalanced-learn scikit-learn.
  2. Load your feature matrix (X) and target vector (y).
  3. Select a resampling method: smote, undersample, or hybrid.
  4. Run the balance_data method to process the dataset.
  5. Use the balanced dataset for model training or analysis.

            # Usage Example
            balancer = DataBalancer(method="hybrid")
            X_balanced, y_balanced = balancer.balance_data(X, y)
            print("Distribution after balancing:", dict(pd.Series(y_balanced).value_counts()))
            

Role in the G.O.D. Framework

Future Enhancements