Introduction
The ai_cross_validation_hyperparameter_optimization.py
script is a key module in the G.O.D. Framework dedicated to optimizing machine learning models through cross-validation and hyperparameter tuning. By automating these processes, the script ensures optimal configuration for the model under evaluation.
Purpose
- Performance Evaluation: Accurately assesses the performance of machine learning models using cross-validation.
- Optimization: Finds the ideal hyperparameter configuration for maximizing model accuracy and efficiency.
- Robustness Testing: Quantifies model resilience under different train-validation splits.
- Pipeline Integration: Streamlines model selection and evaluation for larger data science workflows.
Key Features
- Multi-Fold Cross-Validation: Utilizes techniques like k-fold cross-validation to provide robust model metrics.
- Grid Search: Performs grid-based hyperparameter optimization for exhaustive search.
- Random Search: Implements random hyperparameter search for faster results when the search space is large.
- Visualization: Includes utilities to visualize and compare results from different parameter sets.
Logic and Implementation
At its core, this script automates the evaluation and optimization of machine learning models. The workflow follows these steps:
- Model Preparation: Receives a model, dataset, and parameter grid for tuning.
- Tuning Configuration: Configures a hyperparameter tuning approach (grid search or random search).
- Cross-Validation: Validates the model using k-fold cross-validation for each parameter combination.
- Evaluation: Records and saves performance metrics (e.g., accuracy, precision, F1 score) for each trial.
- Result Selection: Selects the best hyperparameter configuration based on a scoring function (e.g., validation accuracy).
from sklearn.model_selection import GridSearchCV, RandomizedSearchCV, cross_val_score
from sklearn.ensemble import RandomForestClassifier
from sklearn.datasets import make_classification
class HyperparameterOptimizer:
def __init__(self, model, param_grid, search_type="grid", cv=5):
"""
Initializes the optimizer with a machine learning model and parameter grid.
:param model: The machine learning model (e.g., RandomForestClassifier()).
:param param_grid: A dictionary of hyperparameter ranges to optimize.
:param search_type: Type of search ('grid' or 'random').
:param cv: Number of cross-validation folds.
"""
self.model = model
self.param_grid = param_grid
self.search_type = search_type
self.cv = cv
def perform_search(self, X, y):
"""
Executes the hyperparameter optimization search based on the selected type.
:param X: Feature matrix.
:param y: Target vector.
"""
if self.search_type == "grid":
search = GridSearchCV(estimator=self.model, param_grid=self.param_grid, cv=self.cv)
elif self.search_type == "random":
search = RandomizedSearchCV(estimator=self.model, param_distributions=self.param_grid, cv=self.cv, n_iter=10)
else:
raise ValueError("Invalid search type. Use 'grid' or 'random'.")
search.fit(X, y)
return search.best_params_, search.best_score_
if __name__ == "__main__":
# Example: Hyperparameter optimization for a Random Forest classifier
X, y = make_classification(n_samples=1000, n_features=20, n_classes=2, random_state=42)
model = RandomForestClassifier(random_state=42)
param_grid = {
"n_estimators": [50, 100, 150],
"max_depth": [5, 10, 15],
"min_samples_split": [2, 5, 10]
}
optimizer = HyperparameterOptimizer(model=model, param_grid=param_grid, search_type="grid", cv=5)
best_params, best_score = optimizer.perform_search(X, y)
print(f"Best Parameters: {best_params}")
print(f"Best Score: {best_score}")
Dependencies
The script requires the following Python libraries, which are common for ML workflows:
scikit-learn
: Core library for machine learning and cross-validation.numpy
(optional): For numerical computations used in feature processing.
How to Use This Script
- Prepare your dataset as feature matrix
X
and target vectory
. - Define a candidate machine learning model (e.g., RandomForest, SVM).
- Specify a hyperparameter grid or distribution to tune.
- Run the
perform_search
method to start optimization. - Review and apply the best hyperparameters for your final trained model.
# Example usage
optimizer = HyperparameterOptimizer(
model=RandomForestClassifier(),
param_grid={"n_estimators": [100, 200], "max_depth": [10, 20]},
search_type="grid",
cv=3
)
best_params, best_score = optimizer.perform_search(X, y)
print("Optimization Complete:", best_params, best_score)
Role in the G.O.D. Framework
- Model Training: Enhances the outcomes of
ai_training_model.py
by providing pre-trained configurations. - Explainability: Supplies optimized parameter data to modules like
ai_explainability.py
. - Data Pipeline: Works alongside components like
ai_data_privacy_manager.py
for clean, efficient input-output configurations.
Future Enhancements
- Bayesian Optimization: Add advanced Bayesian methodologies for hyperparameter searches.
- Visualization Dashboards: Real-time tuning progress and metric visualizations.
- Integration with Cloud Services: Support large-scale hyperparameter tuning using cloud backends like AWS or GCP.