G.O.D. Framework

Script: ai_conscious_module.py - A Self-Awareness Enabler

Introduction

The ai_conscious_module.py script acts as a critical piece in the G.O.D. Framework's architecture. It builds upon the foundational elements of the ai_conscious_creator.py, providing a specialized suite of self-awareness functionalities, allowing the system to monitor and analyze its own performance, decision processes, and internal state.

Purpose

Key Features

Logic and Implementation

The ai_conscious_module.py script employs principles inspired by cognitive science to build a highly adaptive self-monitoring system. The steps involved include:

  1. Observes internal system behavior at runtime, analyzing decision outcomes.
  2. Evaluates discrepancies, inefficiencies, and deviations from standard protocols.
  3. Stores all observations into a reflective memory unit for future referencing.
  4. Collaborates with other modules like ai_data_balancer.py or ai_error_tracker.py to correct identified issues.


            class ConsciousModule:
                def __init__(self):
                    self.audit_logs = []
                    self.performance_metrics = {
                        "accuracy": [],
                        "latency": [],
                        "error_rate": []
                    }

                def monitor(self, metric_name, value):
                    """
                    Monitors and logs the performance metrics over time.
                    :param metric_name: The name of the metric (e.g., accuracy, error_rate).
                    :param value: The value of the metric at runtime.
                    """
                    if metric_name in self.performance_metrics:
                        self.performance_metrics[metric_name].append(value)
                    else:
                        raise ValueError(f"Metric {metric_name} is not recognized.")

                def reflect(self):
                    """
                    Reflects on the stored metrics and makes adjustments or raises flags.
                    """
                    avg_error_rate = sum(self.performance_metrics["error_rate"]) / len(self.performance_metrics["error_rate"])
                    if avg_error_rate > 0.05:  # Arbitrary threshold for high error rate
                        print("Warning: Error rate is exceeding acceptable limits.")

                    # Example introspection
                    print(f"Current Accuracy Trend: {self.performance_metrics['accuracy']}")

                def log_decisions(self, decision_details: dict):
                    """
                    Logs internal decision-making processes for auditing.
                    :param decision_details: A dictionary containing decision insights.
                    """
                    self.audit_logs.append(decision_details)
                    print(f"Decision logged: {decision_details}")

            if __name__ == "__main__":
                conscious_module = ConsciousModule()
                conscious_module.monitor("accuracy", 0.92)
                conscious_module.monitor("error_rate", 0.04)
                conscious_module.reflect()
                conscious_module.log_decisions(
                    {"decision": "Re-route data pipeline", "reason": "Optimize latency"}
                )
            

Dependencies

The script relies on minimal external dependencies to maintain lightweight introspection capabilities. Key dependencies include:

How to Use This Script

  1. Instantiate the ConsciousModule class.
  2. Use the monitor() method to log system metrics like accuracy or error rate.
  3. Run the reflect() function periodically to introspect and improve performance.
  4. Log detailed decisions using the log_decisions() method, specifying reasons and outcomes.

            # Example usage
            conscious_module = ConsciousModule()

            # Monitor system behavior
            conscious_module.monitor("accuracy", 0.87)
            conscious_module.monitor("latency", 120)

            # Reflect on recent performance
            conscious_module.reflect()

            # Log auditing information
            conscious_module.log_decisions({
                "decision": "Reset training process",
                "reason": "Model drift detected"
            })
            

Role in the G.O.D. Framework

Future Enhancements