Introduction
The ai_clustering.py script is a dedicated module for performing unsupervised machine learning tasks, particularly clustering. This script employs algorithms like K-Means, DBSCAN, and Hierarchical Clustering to segment datasets into meaningful groups. It serves as a core component for data exploration, customer segmentation, anomaly detection, and feature engineering within the G.O.D. Framework.
Purpose
- Data Exploration: Enables developers to identify patterns and inherent groupings in raw datasets.
- Customer Segmentation: Supports marketing strategies by clustering customers into similar groups.
- Anomaly Detection: Detects outliers within clusters for improving downstream AI decision-making.
- Feature Engineering: Creates cluster-based features, which enhance supervised learning models.
Key Features
- Multiple Clustering Algorithms: Implements K-Means, DBSCAN, and Hierarchical Clustering out-of-the-box.
- Visualizing Clusters: Includes visualization utilities like scatter plots and dendrograms for cluster interpretation.
- Customizability: Allows for parameter tuning, distance metric adjustments, and algorithm selection.
- Scalability: Optimized for both small and large datasets using efficient implementations like scikit-learn.
Logic and Implementation
This script provides multiple clustering options and processes data as follows:
- Accepts a dataset (e.g., a Pandas DataFrame or NumPy array).
- Normalizes the dataset to ensure all features contribute equally to distance calculations.
- Applies clustering algorithms based on specified parameters.
- Outputs labels and, optionally, cluster metrics for evaluation (e.g., silhouette score).
Here is an example of core functionality:
from sklearn.cluster import KMeans, DBSCAN
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import silhouette_score
import matplotlib.pyplot as plt
def perform_clustering(data, algorithm="kmeans", **kwargs):
"""
Performs clustering using the specified algorithm.
:param data: Dataset to cluster (NumPy array or DataFrame).
:param algorithm: Clustering algorithm ('kmeans', 'dbscan', 'hierarchical').
:return: Cluster labels and evaluation scores.
"""
scaler = StandardScaler()
normalized_data = scaler.fit_transform(data)
if algorithm == "kmeans":
n_clusters = kwargs.get("n_clusters", 3)
model = KMeans(n_clusters=n_clusters, random_state=42)
elif algorithm == "dbscan":
eps = kwargs.get("eps", 0.5)
min_samples = kwargs.get("min_samples", 5)
model = DBSCAN(eps=eps, min_samples=min_samples)
else:
raise ValueError("Unsupported clustering algorithm.")
labels = model.fit_predict(normalized_data)
silhouette = silhouette_score(normalized_data, labels)
return labels, silhouette
def visualize_clusters(data, labels):
"""
Visualizes clusters using a scatter plot.
:param data: Dataset (assumes 2D after preprocessing).
:param labels: Cluster assignments.
"""
plt.scatter(data[:, 0], data[:, 1], c=labels, cmap="viridis")
plt.title("Cluster Visualization")
plt.show()
if __name__ == "__main__":
import numpy as np
# Example dataset: Random points
sample_data = np.random.rand(100, 2)
labels, score = perform_clustering(sample_data, algorithm="kmeans", n_clusters=3)
print(f"Silhouette Score: {score:.2f}")
visualize_clusters(sample_data, labels)
Dependencies
scikit-learn
: For implementing clustering algorithms.matplotlib
: For visualizing clusters.numpy
: For handling numerical computations.pandas
: Facilitates preprocessing of tabular datasets.
How to Use This Script
- Load a preprocessed dataset (numerical data).
- Select a clustering algorithm (e.g., K-Means or DBSCAN).
- Customize parameters like number of clusters (
n_clusters
) or density thresholds (eps
). - Generate and interpret cluster labels and evaluations like silhouette scores.
- Utilize visualization utilities to interpret clusters.
# Example use case with DBSCAN
dbscan_labels, dbscan_score = perform_clustering(
sample_data, algorithm="dbscan", eps=0.3, min_samples=3
)
print(f"Silhouette Score (DBSCAN): {dbscan_score:.2f}")
visualize_clusters(sample_data, dbscan_labels)
Role in the G.O.D. Framework
- Data Insights: Enables exploratory data analysis in preparation for AI workflows...
- Anomaly Detection: Used for preprocessing datasets that require outlier removal...