More Developers Docs: The AI Feedback Collector System enables the systematic collection of model predictions, user feedback, and related metrics for long-term analysis and refinement of AI systems. By leveraging a structured SQLite database, this system ensures persistence, traceability, and detailed insights for model monitoring, debugging, and optimization over time.
The FeedbackCollector class serves as the foundation of the system, streamlining the process of logging prediction data, model performance, and relevant metrics (e.g., latency).
The AI Feedback Collector System addresses several critical needs in AI workflows:
By integrating this system, practitioners can streamline and automate feedback collection pipelines, ensuring AI systems remain robust, explainable, and aligned with user expectations over time.
1. SQLite-Powered Feedback Logging:
2. Rich Metadata:
3. Reproducibility and Debugging:
4. Model Versioning:
5. Ease of Integration:
The FeedbackCollector class handles database initialization, feedback logging, and error handling to ensure robust operation.
python
import sqlite3
import logging
from datetime import datetime
class FeedbackCollector:
"""
Logs pipeline predictions and metrics for long-term analysis and refinement.
"""
def __init__(self, db_path="feedback.db"):
self.db_path = db_path
self._initialize_database()
def _initialize_database(self):
"""
Initializes the SQLite database for feedback collection.
"""
try:
with sqlite3.connect(self.db_path) as conn:
cursor = conn.cursor()
cursor.execute('''CREATE TABLE IF NOT EXISTS feedback (
id INTEGER PRIMARY KEY,
timestamp TEXT,
input_data TEXT,
prediction TEXT,
actual_value TEXT,
model_version TEXT,
latency REAL
)''')
conn.commit()
except Exception as e:
logging.error(f"Failed to initialize feedback database: {e}")
def log_feedback(self, input_data, prediction, actual_value, model_version, latency):
"""
Logs feedback into the database.
"""
timestamp = datetime.now().strftime('%Y-%m-%d %H:%M:%S')
try:
with sqlite3.connect(self.db_path) as conn:
cursor = conn.cursor()
cursor.execute(
'''INSERT INTO feedback (timestamp, input_data, prediction, actual_value, model_version, latency)
VALUES (?, ?, ?, ?, ?, ?)''',
(timestamp, str(input_data), str(prediction), str(actual_value), model_version, latency)
)
conn.commit()
logging.info("Feedback logged successfully.")
except Exception as e:
logging.error(f"Failed to log feedback: {e}")
Inputs:
* Database Schema:
Here are some advanced usage examples to demonstrate the system's capabilities.
In this example, we log model predictions along with their input data, actual values, and latency.
python from ai_feedback_collector import FeedbackCollector import time
Simulated objects
model = ... # Trained model test_data = ... # Test data as input true_labels = ... # Actual ground truth model_version = "v1.0"
Initialize FeedbackCollector
feedback_collector = FeedbackCollector()
Log predictions and related feedback
start_time = time.time()
predictions = model.predict(test_data)
end_time = time.time()
feedback_collector.log_feedback(
input_data=test_data,
prediction=predictions,
actual_value=true_labels,
model_version=model_version,
latency=end_time - start_time
)
Explanation:
Use the stored feedback to retrieve and analyze cases where predictions failed or were incorrect.
python import sqlite3
Retrieve incorrect predictions from the database
def fetch_errors(db_path="feedback.db"):
with sqlite3.connect(db_path) as conn:
cursor = conn.cursor()
query = '''SELECT * FROM feedback WHERE prediction != actual_value'''
cursor.execute(query)
return cursor.fetchall()
Fetch and print incorrect feedback logs
errors = fetch_errors()
for error in errors:
print(f"Error Entry: {error}")
Explanation:
The system can be extended by adding fields like confidence scores, user feedback, or error ratings.
python
class ExtendedFeedbackCollector(FeedbackCollector):
def _initialize_database(self):
"""
Extends the database schema to include confidence scores.
"""
try:
with sqlite3.connect(self.db_path) as conn:
cursor = conn.cursor()
cursor.execute('''CREATE TABLE IF NOT EXISTS feedback (
id INTEGER PRIMARY KEY,
timestamp TEXT,
input_data TEXT,
prediction TEXT,
actual_value TEXT,
model_version TEXT,
latency REAL,
confidence_score REAL
)''')
conn.commit()
except Exception as e:
logging.error(f"Failed to initialize extended feedback database: {e}")
def log_feedback(self, input_data, prediction, actual_value, model_version, latency, confidence_score):
"""
Logs feedback with additional metrics like confidence scores.
"""
timestamp = datetime.now().strftime('%Y-%m-%d %H:%M:%S')
try:
with sqlite3.connect(self.db_path) as conn:
cursor = conn.cursor()
cursor.execute(
'''INSERT INTO feedback (timestamp, input_data, prediction, actual_value, model_version, latency, confidence_score)
VALUES (?, ?, ?, ?, ?, ?, ?)''',
(timestamp, str(input_data), str(prediction), str(actual_value), model_version, latency, confidence_score)
)
conn.commit()
logging.info("Extended feedback logged successfully.")
except Exception as e:
logging.error(f"Failed to log extended feedback: {e}")
Integrate feedback logging with an API to log user interactions in real time.
python
from flask import Flask, request, jsonify
app = Flask(__name__)
feedback_collector = FeedbackCollector()
@app.route('/log-feedback', methods=['POST'])
def log_feedback():
data = request.json
feedback_collector.log_feedback(
input_data=data['input_data'],
prediction=data['prediction'],
actual_value=data.get('actual_value', None),
model_version=data['model_version'],
latency=data['latency']
)
return jsonify({"message": "Feedback logged successfully"})
Explanation:
1. Model Tracking Across Versions:
2. Bias and Drift Monitoring:
3. Auditing and Compliance:
4. Real-Time Error Detection:
5. Data Pipeline Debugging:
1. Secure Logging:
2. Schema Evolution:
3. Performance Optimization:
4. Visualization and Aggregation:
5. Regular Maintenance:
The AI Feedback Collector System is a powerful tool for maintaining traceable, detailed records of model predictions and performance metrics. By supporting structured feedback logging, model version comparisons, and extensible schemas, it enables robust AI lifecycle management. Whether for debugging, compliance, or optimization, this system ensures practical and scalable feedback collection for modern AI applications.