* More Developers Docs: The AI Data Validation system is a key component designed to ensure data integrity, schema consistency, and quality standards within a given pipeline. It evaluates datasets for missing values, schema mismatches, and general data inconsistencies while providing flexibility for extensibility.
This document elaborates on the functionality of AI Data Validation, its core processes, advanced use cases, integration details from the template, and additional best practices. The examples and instructions provided here are aimed to facilitate developers in getting the most out of this system.
The AI Data Validation system provides the following primary capabilities:
The DataValidation class is the backbone of this system. It includes a static method validate that performs all logic for checking data consistency and logging the results.
python
import logging
class DataValidation:
"""
Validates input data for schema consistency, missing values, or data quality issues.
"""
@staticmethod
def validate(data):
"""
Perform validation checks on the given data.
:param data: Data to validate
:return: Boolean (True for valid data, False otherwise)
"""
logging.info("Validating data...")
if not data:
logging.error("Validation failed: Data is empty.")
return False
if any(element is None for element in data):
logging.error("Validation failed: Missing values in data.")
return False
logging.info("Data validation passed.")
return True
Key Points:
1. Logging Integration:
2. Validation Rules:
3. Modular:
Here are advanced scenarios where the Data Validation Module can be extended or used.
Expand the basic validation to enforce uniform data type rules. For example, ensuring all elements are integers:
python
class DataTypeValidation(DataValidation):
@staticmethod
def validate(data, data_type=int):
if not super().validate(data):
return False
if not all(isinstance(x, data_type) for x in data):
logging.error(f"Validation failed: All elements must be {data_type}.")
return False
logging.info("Data type validation passed.")
return True
data = [1, 2, 'three', 4] # Includes invalid string
if not DataTypeValidation.validate(data):
print("Failed Validation: Non-integer found.")
Check if numeric data values lie within a specific range:
python
class ThresholdValidation(DataValidation):
@staticmethod
def validate(data, min_val, max_val):
if not super().validate(data):
return False
if not all(min_val <= x <= max_val for x in data):
logging.error(f"Validation failed: Values out of range ({min_val} to {max_val}).")
return False
logging.info("Threshold validation passed.")
return True
data = [10, 20, 30, 400] # 400 exceeds max threshold
if not ThresholdValidation.validate(data, 0, 100):
print("Failed Validation: Data out of acceptable range.")
For structured datasets, integrate JSON schema validation using libraries like `jsonschema`:
python
import jsonschema
from jsonschema import validate
class JsonSchemaValidation(DataValidation):
@staticmethod
def validate(data, schema):
try:
validate(instance=data, schema=schema)
logging.info("JSON schema validation passed.")
return True
except jsonschema.exceptions.ValidationError as err:
logging.error(f"Schema validation failed: {err}")
return False
# Sample JSON and Schema
data = {"name": "John", "age": 30}
schema = {
"type": "object",
"properties": {
"name": {"type": "string"},
"age": {"type": "integer"},
},
"required": ["name", "age"],
}
if JsonSchemaValidation.validate(data, schema):
print("JSON Schema Validated Successfully")
Extensions to Consider:
Best Practices:
The AI Data Validation system is both flexible and powerful, enabling basic to advanced data integrity checks. Its integration into web-based systems and extensibility make it an essential component in data pipelines.