User Tools

Site Tools


visualization

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
visualization [2025/05/30 13:57] – [Workflow of the Method] eagleeyenebulavisualization [2025/05/30 13:59] (current) – [Best Practices] eagleeyenebula
Line 96: Line 96:
 ===== Usage Examples ===== ===== Usage Examples =====
  
-Below are practical examples of how to use the `plot_metrics()method for visualizing training metrics.+Below are practical examples of how to use the **plot_metrics()** method for visualizing training metrics.
  
 ==== Example 1: Visualizing Accuracy and Loss ==== ==== Example 1: Visualizing Accuracy and Loss ====
Line 103: Line 103:
  
 <code> <code>
-```python+python
 from visualization import Visualization from visualization import Visualization
  
Line 114: Line 114:
 # Plot metrics # Plot metrics
 Visualization.plot_metrics(metrics) Visualization.plot_metrics(metrics)
-```+
 </code> </code>
  
 **Expected Output**: **Expected Output**:
-A plot with two lines:+A plot with two lines:
   1. Accuracy improving over epochs.   1. Accuracy improving over epochs.
   2. Loss decreasing over epochs.   2. Loss decreasing over epochs.
-X-axis labeled as "Epochs"+X-axis labeled as "Epochs"
-Y-axis labeled as "Values".+Y-axis labeled as "Values".
  
 ==== Example 2: Single Metric Plot ==== ==== Example 2: Single Metric Plot ====
Line 129: Line 129:
  
 <code> <code>
-```python+python
 # Only validation loss # Only validation loss
 metrics = { metrics = {
Line 136: Line 136:
  
 Visualization.plot_metrics(metrics) Visualization.plot_metrics(metrics)
-```+
 </code> </code>
  
Line 144: Line 144:
  
 <code> <code>
-```python+python
 # Extended visualization # Extended visualization
 metrics = { metrics = {
Line 157: Line 157:
 plt.grid(color="gray", linestyle="--", linewidth=0.5) plt.grid(color="gray", linestyle="--", linewidth=0.5)
 plt.show() plt.show()
-```+
 </code> </code>
  
Line 165: Line 165:
  
 <code> <code>
-```python+python
 # Invalid metrics format to simulate failure # Invalid metrics format to simulate failure
 metrics = { metrics = {
Line 173: Line 173:
  
 Visualization.plot_metrics(metrics) Visualization.plot_metrics(metrics)
-```+
 </code> </code>
  
 **Expected Log**: **Expected Log**:
 <code> <code>
-```+
 `ERROR:root:Failed to plot metrics: object of type 'NoneType' has no len() ` `ERROR:root:Failed to plot metrics: object of type 'NoneType' has no len() `
-``` +
 </code> </code>
  
Line 190: Line 190:
  
 <code> <code>
-```python+python
 for key, values in metrics.items(): for key, values in metrics.items():
     plt.plot(values, label=key, linestyle="--", marker="o", color="red")     plt.plot(values, label=key, linestyle="--", marker="o", color="red")
-```+
 </code> </code>
  
Line 201: Line 201:
  
 <code> <code>
-```python+python
 plt.savefig("metrics_plot.png", dpi=300) plt.savefig("metrics_plot.png", dpi=300)
 logging.info(f"Metrics plot saved to metrics_plot.png") logging.info(f"Metrics plot saved to metrics_plot.png")
-```+
 </code> </code>
  
Line 211: Line 211:
 Embed the plotted visualizations into a web dashboard using tools such as **Dash** or **Flask**: Embed the plotted visualizations into a web dashboard using tools such as **Dash** or **Flask**:
 <code> <code>
-```python+python
 import io import io
 from flask import Flask, Response from flask import Flask, Response
Line 228: Line 228:
 if __name__ == "__main__": if __name__ == "__main__":
     app.run(debug=True)     app.run(debug=True)
-```+
 </code> </code>
  
Line 234: Line 234:
  
 1. **Label Your Plots**: 1. **Label Your Plots**:
-   Always provide meaningful titles, axis labels, and legends to improve readability.+   Always provide meaningful titles, axis labels, and legends to improve readability.
  
 2. **Validate Data Inputs**: 2. **Validate Data Inputs**:
-   Ensure that all metric keys and values are properly structured before invoking `plot_metrics()`.+   Ensure that all metric keys and values are properly structured before invoking `plot_metrics()`.
  
 3. **Modular Designs**: 3. **Modular Designs**:
-   Extend and customize utility functions without modifying the core `Visualization` class directly.+   Extend and customize utility functions without modifying the core `Visualization` class directly.
  
 4. **Optimize for Scaling**: 4. **Optimize for Scaling**:
-   For handling large datasets, reduce the number of points or smooth values to improve performance.+   For handling large datasets, reduce the number of points or smooth values to improve performance.
  
 ===== Conclusion ===== ===== Conclusion =====
visualization.1748613432.txt.gz · Last modified: 2025/05/30 13:57 by eagleeyenebula