User Tools

Site Tools


manage_database

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
manage_database [2025/05/30 13:30] – [Schema Design] eagleeyenebulamanage_database [2025/06/06 13:28] (current) – [Database Manager (SQL)] eagleeyenebula
Line 2: Line 2:
 **[[https://autobotsolutions.com/god/templates/index.1.html|More Developers Docs]]**: **[[https://autobotsolutions.com/god/templates/index.1.html|More Developers Docs]]**:
 The **AI Database Manager (SQL)** provides a robust, extensible interface for working with an **SQLite** database, offering a lightweight yet powerful solution for structured data storage and retrieval. Designed with automation in mind, it features built-in schema initialization, dynamic table creation, and seamless data insertion capabilities, ensuring that database structures are consistently aligned with application needs. By abstracting **low-level SQL operations** into reusable methods, the manager allows developers to interact with the database using high-level, intuitive interfaces reducing boilerplate and improving productivity. The **AI Database Manager (SQL)** provides a robust, extensible interface for working with an **SQLite** database, offering a lightweight yet powerful solution for structured data storage and retrieval. Designed with automation in mind, it features built-in schema initialization, dynamic table creation, and seamless data insertion capabilities, ensuring that database structures are consistently aligned with application needs. By abstracting **low-level SQL operations** into reusable methods, the manager allows developers to interact with the database using high-level, intuitive interfaces reducing boilerplate and improving productivity.
 +
 +{{youtube>PQe980VEh6A?large}}
 +
 +-------------------------------------------------------------
  
 In addition to storing structured logs, configuration parameters, and experiment metadata, the Database Manager includes optimized methods for saving and querying performance metrics, making it a key component in tracking experiment results, application telemetry, or AI model performance. Its modular design supports easy extension to other SQL engines if needed, and its integration-ready format makes it suitable for both standalone applications and larger AI or data processing pipelines. By combining automation, efficiency, and adaptability, the Database Manager enables scalable data handling while maintaining simplicity and transparency for developers and researchers alike. In addition to storing structured logs, configuration parameters, and experiment metadata, the Database Manager includes optimized methods for saving and querying performance metrics, making it a key component in tracking experiment results, application telemetry, or AI model performance. Its modular design supports easy extension to other SQL engines if needed, and its integration-ready format makes it suitable for both standalone applications and larger AI or data processing pipelines. By combining automation, efficiency, and adaptability, the Database Manager enables scalable data handling while maintaining simplicity and transparency for developers and researchers alike.
Line 55: Line 59:
 ==== Initialization ==== ==== Initialization ====
  
-The `__init__method initializes the SQLite database connection and ensures the schema is pre-created.+The __init__ method initializes the SQLite database connection and ensures the schema is pre-created.
  
 <code> <code>
-```python+python
 def __init__(self, db_path): def __init__(self, db_path):
     """     """
Line 68: Line 72:
     self.cursor = self.connection.cursor()     self.cursor = self.connection.cursor()
     self._initialize_schema()     self._initialize_schema()
-```+
 </code> </code>
  
Line 76: Line 80:
  
 <code> <code>
-```python+python
 def _initialize_schema(self): def _initialize_schema(self):
     """     """
Line 90: Line 94:
     ''')     ''')
     self.connection.commit()     self.connection.commit()
-```+
 </code> </code>
  
 Customizable Schema Changes: Customizable Schema Changes:
 +<code>
 - Modify the `CREATE TABLE` SQL if additional tables or fields are required. - Modify the `CREATE TABLE` SQL if additional tables or fields are required.
 +</code>
 ==== Metric Saving ==== ==== Metric Saving ====
  
Line 101: Line 106:
  
 <code> <code>
-```python+python
 def save_metrics(self, metrics): def save_metrics(self, metrics):
     """     """
Line 115: Line 120:
         ''', (metric_name, metric_value))         ''', (metric_name, metric_value))
     self.connection.commit()     self.connection.commit()
-```+
 </code> </code>
  
Line 123: Line 128:
  
 <code> <code>
-```python+python
 def close(self): def close(self):
     """     """
Line 130: Line 135:
     if self.connection:     if self.connection:
         self.connection.close()         self.connection.close()
-```+
 </code> </code>
  
Line 142: Line 147:
  
 <code> <code>
-```python+python
 from manage_database import DatabaseManagerSQL from manage_database import DatabaseManagerSQL
  
Line 148: Line 153:
 db_manager = DatabaseManagerSQL(db_path="./my_database.db") db_manager = DatabaseManagerSQL(db_path="./my_database.db")
 print("Database initialized successfully.") print("Database initialized successfully.")
-```+
 </code> </code>
  
 ==== Example 2: Saving Metrics into the Database ==== ==== Example 2: Saving Metrics into the Database ====
  
-Insert key-value pairs of metrics into the `metricstable programmatically.+Insert key-value pairs of metrics into the **metrics** table programmatically.
  
 <code> <code>
-```python+python
 # Define metrics to save # Define metrics to save
 metrics = { metrics = {
Line 167: Line 172:
 db_manager.save_metrics(metrics) db_manager.save_metrics(metrics)
 print("Metrics saved successfully.") print("Metrics saved successfully.")
-```+
 </code> </code>
  
Line 175: Line 180:
  
 <code> <code>
-```python+python
 # Close the database manager connection # Close the database manager connection
 db_manager.close() db_manager.close()
 print("Database connection closed.") print("Database connection closed.")
-```+
 </code> </code>
  
Line 187: Line 192:
  
 <code> <code>
-```python+python
 import time import time
 import random import random
Line 199: Line 204:
     db_manager.save_metrics(metrics)     db_manager.save_metrics(metrics)
     time.sleep(2)     time.sleep(2)
-```+
 </code> </code>
  
Line 207: Line 212:
  
 <code> <code>
-```python+python
 def fetch_all_metrics(self): def fetch_all_metrics(self):
     """     """
Line 214: Line 219:
     self.cursor.execute('SELECT * FROM metrics;')     self.cursor.execute('SELECT * FROM metrics;')
     return self.cursor.fetchall()     return self.cursor.fetchall()
-```+
 </code> </code>
  
Line 220: Line 225:
  
 <code> <code>
-```python+python
 # Fetch and print all metrics # Fetch and print all metrics
 all_metrics = db_manager.fetch_all_metrics() all_metrics = db_manager.fetch_all_metrics()
 print(all_metrics) print(all_metrics)
-```+
 </code> </code>
  
Line 230: Line 235:
  
 1. **Custom Metric Analysis**: 1. **Custom Metric Analysis**:
-   Extend the schema and add queries for computing averages, maxes, or trends.+   Extend the schema and add queries for computing averages, maxes, or trends.
  
 2. **Batch Framework Integration**: 2. **Batch Framework Integration**:
-   Integrate as the backend for AI monitoring or feedback-driven systems.+   Integrate as the backend for AI monitoring or feedback-driven systems.
  
 3. **Error Resilience**: 3. **Error Resilience**:
-   Extend the `save_metricsmethod with exception handling for edge cases.+   Extend the **save_metrics** method with exception handling for edge cases.
  
 ===== Best Practices ===== ===== Best Practices =====
  
 1. **Ensure Connection Lifecycle**: 1. **Ensure Connection Lifecycle**:
-   Always close the database connection using the `close()` method at the end of workflow execution.+   Always close the database connection using the `close()` method at the end of workflow execution.
        
 2. **Validate Metric Keys**: 2. **Validate Metric Keys**:
-   Ensure all metric names follow a consistent naming scheme to avoid ambiguity.+   Ensure all metric names follow a consistent naming scheme to avoid ambiguity.
  
 3. **Avoid Large Batches**: 3. **Avoid Large Batches**:
-   Limit batch-inserts to avoid database locks or increased latency.+   Limit batch-inserts to avoid database locks or increased latency.
  
 ===== Conclusion ===== ===== Conclusion =====
manage_database.1748611824.txt.gz · Last modified: 2025/05/30 13:30 by eagleeyenebula