User Tools

Site Tools


manage_database

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
manage_database [2025/04/25 23:40] – external edit 127.0.0.1manage_database [2025/06/06 13:28] (current) – [Database Manager (SQL)] eagleeyenebula
Line 1: Line 1:
 ====== Database Manager (SQL) ====== ====== Database Manager (SQL) ======
-**[[https://autobotsolutions.com/god/templates/index.1.html|More Developers Docs]]**: +**[[https://autobotsolutions.com/god/templates/index.1.html|More Developers Docs]]**: 
-The **Database Manager (SQL)** provides a robust, extensible interface for working with an SQLite database. With automated schema initialization and methods to save metricsit is designed for efficient management of structured data.+The **AI Database Manager (SQL)** provides a robust, extensible interface for working with an **SQLite** database, offering a lightweight yet powerful solution for structured data storage and retrievalDesigned with automation in mind, it features built-in schema initialization, dynamic table creation, and seamless data insertion capabilities, ensuring that database structures are consistently aligned with application needs. By abstracting **low-level SQL operations** into reusable methods, the manager allows developers to interact with the database using high-levelintuitive interfaces reducing boilerplate and improving productivity.
  
 +{{youtube>PQe980VEh6A?large}}
 +
 +-------------------------------------------------------------
 +
 +In addition to storing structured logs, configuration parameters, and experiment metadata, the Database Manager includes optimized methods for saving and querying performance metrics, making it a key component in tracking experiment results, application telemetry, or AI model performance. Its modular design supports easy extension to other SQL engines if needed, and its integration-ready format makes it suitable for both standalone applications and larger AI or data processing pipelines. By combining automation, efficiency, and adaptability, the Database Manager enables scalable data handling while maintaining simplicity and transparency for developers and researchers alike.
 ===== Overview ===== ===== Overview =====
  
Line 28: Line 33:
 ===== System Scope ===== ===== System Scope =====
  
-The system is designed for: +**The system is designed for:** 
-  1. **Metric Storage**: Captures and stores system metrics with timestamps. +1. **Metric Storage**: Captures and stores system metrics with timestamps. 
-  2. **PERF Tracking**: Collects and records performance evaluations for machine learning workflows. + 
-  3. **Advanced Extensibility**: Allows adding additional tables or queries for analytical purposes. +2. **PERF Tracking**: Collects and records performance evaluations for machine learning workflows. 
-  4. **Scalability**: Supports expanding to other database backends such as PostgreSQL or MySQL in the future.+ 
 +3. **Advanced Extensibility**: Allows adding additional tables or queries for analytical purposes. 
 + 
 +4. **Scalability**: Supports expanding to other database backends such as **PostgreSQL** or **MySQL** in the future.
  
 ===== Schema Design ===== ===== Schema Design =====
Line 40: Line 48:
 | **Table Name** | **Column Name**     | **Data Type** | **Description**                                | | **Table Name** | **Column Name**     | **Data Type** | **Description**                                |
 |----------------|---------------------|---------------|------------------------------------------------| |----------------|---------------------|---------------|------------------------------------------------|
-`metrics     `id              | INTEGER       | Unique ID for each metric (Auto-increment).    | +| metrics      | id               | INTEGER       | Unique ID for each metric (Auto-increment).    | 
-|                | `metric_name     | TEXT          | Name or key associated with the metric.        | +|                | metric_name      | TEXT          | Name or key associated with the metric.        | 
-|                | `metric_value    | REAL          | The value of the recorded metric.              | +|                | metric_value     | REAL          | The value of the recorded metric.              | 
-|                | `timestamp       | DATETIME      | The time when the metric was recorded.         |+|                | timestamp        | DATETIME      | The time when the metric was recorded.         |
  
 ===== Class Design ===== ===== Class Design =====
Line 51: Line 59:
 ==== Initialization ==== ==== Initialization ====
  
-The `__init__method initializes the SQLite database connection and ensures the schema is pre-created.+The __init__ method initializes the SQLite database connection and ensures the schema is pre-created.
  
 <code> <code>
-```python+python
 def __init__(self, db_path): def __init__(self, db_path):
     """     """
Line 64: Line 72:
     self.cursor = self.connection.cursor()     self.cursor = self.connection.cursor()
     self._initialize_schema()     self._initialize_schema()
-```+
 </code> </code>
  
Line 72: Line 80:
  
 <code> <code>
-```python+python
 def _initialize_schema(self): def _initialize_schema(self):
     """     """
Line 86: Line 94:
     ''')     ''')
     self.connection.commit()     self.connection.commit()
-```+
 </code> </code>
  
 Customizable Schema Changes: Customizable Schema Changes:
 +<code>
 - Modify the `CREATE TABLE` SQL if additional tables or fields are required. - Modify the `CREATE TABLE` SQL if additional tables or fields are required.
 +</code>
 ==== Metric Saving ==== ==== Metric Saving ====
  
Line 97: Line 106:
  
 <code> <code>
-```python+python
 def save_metrics(self, metrics): def save_metrics(self, metrics):
     """     """
Line 111: Line 120:
         ''', (metric_name, metric_value))         ''', (metric_name, metric_value))
     self.connection.commit()     self.connection.commit()
-```+
 </code> </code>
  
Line 119: Line 128:
  
 <code> <code>
-```python+python
 def close(self): def close(self):
     """     """
Line 126: Line 135:
     if self.connection:     if self.connection:
         self.connection.close()         self.connection.close()
-```+
 </code> </code>
  
Line 138: Line 147:
  
 <code> <code>
-```python+python
 from manage_database import DatabaseManagerSQL from manage_database import DatabaseManagerSQL
  
Line 144: Line 153:
 db_manager = DatabaseManagerSQL(db_path="./my_database.db") db_manager = DatabaseManagerSQL(db_path="./my_database.db")
 print("Database initialized successfully.") print("Database initialized successfully.")
-```+
 </code> </code>
  
 ==== Example 2: Saving Metrics into the Database ==== ==== Example 2: Saving Metrics into the Database ====
  
-Insert key-value pairs of metrics into the `metricstable programmatically.+Insert key-value pairs of metrics into the **metrics** table programmatically.
  
 <code> <code>
-```python+python
 # Define metrics to save # Define metrics to save
 metrics = { metrics = {
Line 163: Line 172:
 db_manager.save_metrics(metrics) db_manager.save_metrics(metrics)
 print("Metrics saved successfully.") print("Metrics saved successfully.")
-```+
 </code> </code>
  
Line 171: Line 180:
  
 <code> <code>
-```python+python
 # Close the database manager connection # Close the database manager connection
 db_manager.close() db_manager.close()
 print("Database connection closed.") print("Database connection closed.")
-```+
 </code> </code>
  
Line 183: Line 192:
  
 <code> <code>
-```python+python
 import time import time
 import random import random
Line 195: Line 204:
     db_manager.save_metrics(metrics)     db_manager.save_metrics(metrics)
     time.sleep(2)     time.sleep(2)
-```+
 </code> </code>
  
Line 203: Line 212:
  
 <code> <code>
-```python+python
 def fetch_all_metrics(self): def fetch_all_metrics(self):
     """     """
Line 210: Line 219:
     self.cursor.execute('SELECT * FROM metrics;')     self.cursor.execute('SELECT * FROM metrics;')
     return self.cursor.fetchall()     return self.cursor.fetchall()
-```+
 </code> </code>
  
Line 216: Line 225:
  
 <code> <code>
-```python+python
 # Fetch and print all metrics # Fetch and print all metrics
 all_metrics = db_manager.fetch_all_metrics() all_metrics = db_manager.fetch_all_metrics()
 print(all_metrics) print(all_metrics)
-```+
 </code> </code>
  
Line 226: Line 235:
  
 1. **Custom Metric Analysis**: 1. **Custom Metric Analysis**:
-   Extend the schema and add queries for computing averages, maxes, or trends.+   Extend the schema and add queries for computing averages, maxes, or trends.
  
 2. **Batch Framework Integration**: 2. **Batch Framework Integration**:
-   Integrate as the backend for AI monitoring or feedback-driven systems.+   Integrate as the backend for AI monitoring or feedback-driven systems.
  
 3. **Error Resilience**: 3. **Error Resilience**:
-   Extend the `save_metricsmethod with exception handling for edge cases.+   Extend the **save_metrics** method with exception handling for edge cases.
  
 ===== Best Practices ===== ===== Best Practices =====
  
 1. **Ensure Connection Lifecycle**: 1. **Ensure Connection Lifecycle**:
-   Always close the database connection using the `close()` method at the end of workflow execution.+   Always close the database connection using the `close()` method at the end of workflow execution.
        
 2. **Validate Metric Keys**: 2. **Validate Metric Keys**:
-   Ensure all metric names follow a consistent naming scheme to avoid ambiguity.+   Ensure all metric names follow a consistent naming scheme to avoid ambiguity.
  
 3. **Avoid Large Batches**: 3. **Avoid Large Batches**:
-   Limit batch-inserts to avoid database locks or increased latency.+   Limit batch-inserts to avoid database locks or increased latency
 + 
 +===== Conclusion ===== 
 + 
 +The Database Manager (SQL) is a vital component within the G.O.D. Framework, offering a robust and extensible interface for managing structured data through SQLite. Its design emphasizes automation, with features like dynamic schema initialization and seamless data insertion, ensuring that database structures align consistently with application needs. By abstracting low-level SQL operations into reusable methods, it allows developers to interact with the database using high-level, intuitive interfaces, reducing boilerplate and enhancing productivity.
  
 +Beyond basic data storage, the Database Manager excels in tracking performance metrics, storing structured logs, configuration parameters, and experiment metadata. Its modular architecture supports easy extension to other SQL engines, making it adaptable for both standalone applications and larger AI or data processing pipelines. With built-in error handling and secure transaction management, it ensures data consistency and reliability. As data-driven applications continue to evolve, the Database Manager's scalability and flexibility position it as an indispensable tool for developers and researchers aiming for efficient and reliable data management.
manage_database.1745624455.txt.gz · Last modified: 2025/04/25 23:40 by 127.0.0.1