User Tools

Site Tools


main

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
main [2025/05/30 13:18] – [2. Configuration Loading (load_config)] eagleeyenebulamain [2025/05/30 13:22] (current) – [AI Workflow Orchestrator] eagleeyenebula
Line 5: Line 5:
 Its modular design and extensibility make it an essential framework for handling end-to-end machine learning pipelines in both research and production environments. The **orchestrator** supports dependency management, conditional branching, parallel execution, and automatic resource scaling making it suitable for everything from experimental prototyping to large-scale, automated AI deployments.  Its modular design and extensibility make it an essential framework for handling end-to-end machine learning pipelines in both research and production environments. The **orchestrator** supports dependency management, conditional branching, parallel execution, and automatic resource scaling making it suitable for everything from experimental prototyping to large-scale, automated AI deployments. 
 ---------------------------------------------------------------------- ----------------------------------------------------------------------
-Integration with version control systems, experiment trackers, and monitoring tools ensures that every run is reproducible and observable. Additionally, its event-driven architecture and API-first approach allow seamless interoperability with cloud platforms, container orchestration systems like Kubernetes, and CI/CD pipelines. The AI Workflow Orchestrator empowers teams to operationalize machine learning with confidence accelerating development cycles, reducing manual overhead, and driving continuous improvement in AI systems.+Integration with version control systems, experiment trackers, and monitoring tools ensures that every run is reproducible and observable. Additionally, its event-driven architecture and API-first approach allow seamless interoperability with cloud platforms, container orchestration systems like **Kubernetes**, and **CI/CD pipelines**. The AI Workflow Orchestrator empowers teams to operationalize machine learning with confidence accelerating development cycles, reducing manual overhead, and driving continuous improvement in AI systems.
  
 ---------------------------------------------------------------------- ----------------------------------------------------------------------
Line 160: Line 160:
 ==== 3. Main Function Workflow (main) ==== ==== 3. Main Function Workflow (main) ====
  
-The `main()method integrates all components into a fully functional workflow. Key steps include:+The **main()** method integrates all components into a fully functional workflow. Key steps include:
  
-  1. **Initialize Components**:   +1. **Initialize Components**:   
-     Load the configuration and prepare necessary pipeline tools.+     Load the configuration and prepare necessary pipeline tools.
  
-  2. **Data Preprocessing**:   +2. **Data Preprocessing**:   
-     Fetch and process raw data using the `DataPipelineclass. Splits clean data into training and validation subsets.+     Fetch and process raw data using the **DataPipeline** class. Splits clean data into training and validation subsets.
            
-  3. **Model Training**:   +3. **Model Training**:   
-     Trains an ML model using the `ModelTrainerclass.+     Trains an ML model using the **ModelTrainer** class.
            
-  4. **Model Monitoring and Inference**:   +4. **Model Monitoring and Inference**:   
-     Launches monitoring services and computes predictions.+     Launches monitoring services and computes predictions.
  
 Code Example: Code Example:
 <code> <code>
-```python+python
 def main(): def main():
     """     """
Line 205: Line 205:
     except Exception as e:     except Exception as e:
         logging.error(f"Pipeline execution failed: {e}")         logging.error(f"Pipeline execution failed: {e}")
-```+
 </code> </code>
  
 **Predicted Output**: **Predicted Output**:
 <code> <code>
-```+
 `2023-10-12 12:45:23 INFO Model training completed successfully. 2023-10-12 12:45:45 INFO Predictions: [0.95, 0.72, 0.88] ` `2023-10-12 12:45:23 INFO Model training completed successfully. 2023-10-12 12:45:45 INFO Predictions: [0.95, 0.72, 0.88] `
-``` +
 </code> </code>
  
Line 221: Line 221:
 The pipeline can include real-time model monitoring: The pipeline can include real-time model monitoring:
 <code> <code>
-```python+python
 model_monitoring = ModelMonitoring(config["monitoring"]) model_monitoring = ModelMonitoring(config["monitoring"])
 model_monitoring.start_monitoring(trained_model) model_monitoring.start_monitoring(trained_model)
-```+
 </code> </code>
  
Line 231: Line 231:
 Utilize the `DataDetection` class to validate raw datasets: Utilize the `DataDetection` class to validate raw datasets:
 <code> <code>
-```python+python
 data_detector = DataDetection() data_detector = DataDetection()
 if data_detector.has_issues(raw_data): if data_detector.has_issues(raw_data):
     logging.warning("Potential data issues detected!")     logging.warning("Potential data issues detected!")
-```+
 </code> </code>
  
Line 241: Line 241:
  
 1. **Backup Configurations**: 1. **Backup Configurations**:
-   Always version control configuration files using Git.+   Always version control configuration files using Git.
  
 2. **Continuous Monitoring**: 2. **Continuous Monitoring**:
-   Enable live monitoring of models to track early signs of drift.+   Enable live monitoring of models to track early signs of drift.
  
 3. **Debug Mode**: 3. **Debug Mode**:
-   Include `logging.DEBUGto identify pipeline bottlenecks during development.+   Include **logging.DEBUG** to identify pipeline bottlenecks during development.
        
 ===== Conclusion ===== ===== Conclusion =====
main.1748611122.txt.gz · Last modified: 2025/05/30 13:18 by eagleeyenebula