User Tools

Site Tools


experiments

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
experiments [2025/05/30 13:04] – [Conclusion] eagleeyenebulaexperiments [2025/06/06 12:53] (current) – [Experiment Manager] eagleeyenebula
Line 2: Line 2:
 **[[https://autobotsolutions.com/god/templates/index.1.html|More Developers Docs]]**: **[[https://autobotsolutions.com/god/templates/index.1.html|More Developers Docs]]**:
 The AI Experiment Manager system is responsible for managing and logging configurations, results, and metadata for experiments, serving as the central hub for tracking the lifecycle of experimental workflows. By capturing every variable, parameter, and outcome, it ensures that each experiment is fully traceable and reproducible critical qualities for scientific rigor, iterative development, and compliance in regulated environments. Whether running isolated tests or large-scale batch experiments, the system enables researchers and developers to track progress, compare outcomes, and make informed decisions based on structured, historical data. The AI Experiment Manager system is responsible for managing and logging configurations, results, and metadata for experiments, serving as the central hub for tracking the lifecycle of experimental workflows. By capturing every variable, parameter, and outcome, it ensures that each experiment is fully traceable and reproducible critical qualities for scientific rigor, iterative development, and compliance in regulated environments. Whether running isolated tests or large-scale batch experiments, the system enables researchers and developers to track progress, compare outcomes, and make informed decisions based on structured, historical data.
 +
 +{{youtube>ecLP_X2D16M?large}}
 +
 +-------------------------------------------------------------
  
 Built with flexibility and performance in mind, the Experiment Manager supports versioning of configurations, tagging of experimental runs, and integration with external tools such as model registries, monitoring platforms, and data visualization dashboards. It can accommodate a variety of experiment types from hyperparameter tuning in machine learning models to performance benchmarking in software systems. Through its modular architecture, users can define custom logging behavior, attach contextual metadata, and link results with code snapshots or datasets. This not only promotes reproducibility but also accelerates collaboration and knowledge sharing across teams. With the Experiment Manager, experimentation becomes a disciplined, transparent, and scalable process aligned with best practices in modern research and development workflows. Built with flexibility and performance in mind, the Experiment Manager supports versioning of configurations, tagging of experimental runs, and integration with external tools such as model registries, monitoring platforms, and data visualization dashboards. It can accommodate a variety of experiment types from hyperparameter tuning in machine learning models to performance benchmarking in software systems. Through its modular architecture, users can define custom logging behavior, attach contextual metadata, and link results with code snapshots or datasets. This not only promotes reproducibility but also accelerates collaboration and knowledge sharing across teams. With the Experiment Manager, experimentation becomes a disciplined, transparent, and scalable process aligned with best practices in modern research and development workflows.
Line 30: Line 34:
 ===== System Design ===== ===== System Design =====
  
-The Experiment Manager consists of a single lightweight class `ExperimentManager`. It features a static method, `log_experiment`, which performs the following:+The Experiment Manager consists of a single lightweight class **ExperimentManager**. It features a static method, `log_experiment`, which performs the following:
  
-  1. Takes in **experiment configurations** and **results** in dictionary format+1. Takes in **experiment configurations** and **results** in dictionary format.
-  2. Serializes the data into structured JSON. +
-  3. Appends the JSON data to the specified file, defaulting to `experiment_logs.json`.+
  
-Code snippet for the `ExperimentManagerclass:+2. Serializes the data into structured **JSON**. 
 + 
 +3. Appends the **JSON** data to the specified file, defaulting to **experiment_logs.jso**. 
 + 
 +Code snippet for the **ExperimentManager** class:
  
 <code> <code>
-```python+python
 import logging import logging
 import json import json
Line 68: Line 74:
         except Exception as e:         except Exception as e:
             logging.error(f"Error logging experiment: {e}")             logging.error(f"Error logging experiment: {e}")
-``` 
 </code> </code>
  
Line 78: Line 83:
  
 <code> <code>
-```python+python
 from experiment_manager import ExperimentManager from experiment_manager import ExperimentManager
  
Line 99: Line 104:
 ExperimentManager.log_experiment(config, results) ExperimentManager.log_experiment(config, results)
 print("Experiment logged successfully!") print("Experiment logged successfully!")
-```+
 </code> </code>
  
Line 105: Line 110:
  
 <code> <code>
-```json+json
 { {
     "config": {     "config": {
Line 120: Line 125:
     }     }
 } }
-```+
 </code> </code>
  
Line 128: Line 133:
  
 <code> <code>
-```python+python
 config = { config = {
     "model": "SVM",     "model": "SVM",
Line 142: Line 147:
 file_path = "custom_logs/svm_experiment.json" file_path = "custom_logs/svm_experiment.json"
 ExperimentManager.log_experiment(config, results, file_path=file_path) ExperimentManager.log_experiment(config, results, file_path=file_path)
-```+
 </code> </code>
  
Line 150: Line 155:
  
 <code> <code>
-```python+python
 import datetime import datetime
 import uuid import uuid
Line 169: Line 174:
  
 ExperimentManager.log_experiment(config, results) ExperimentManager.log_experiment(config, results)
-```+
 </code> </code>
  
Line 175: Line 180:
  
 <code> <code>
-```json+json
 { {
     "config": {     "config": {
Line 189: Line 194:
     }     }
 } }
-```+
 </code> </code>
  
Line 197: Line 202:
  
 <code> <code>
-```python+python
 batch = [ batch = [
     {     {
Line 211: Line 216:
 for experiment in batch: for experiment in batch:
     ExperimentManager.log_experiment(experiment["config"], experiment["results"])     ExperimentManager.log_experiment(experiment["config"], experiment["results"])
-```+
 </code> </code>
  
Line 219: Line 224:
  
 <code> <code>
-```python+python
 try: try:
     ExperimentManager.log_experiment({"model": "XGBoost"}, {"accuracy": 0.94}, file_path="/invalid/path.json")     ExperimentManager.log_experiment({"model": "XGBoost"}, {"accuracy": 0.94}, file_path="/invalid/path.json")
 except Exception as e: except Exception as e:
     print(f"Logging failed: {e}")     print(f"Logging failed: {e}")
-```+
 </code> </code>
  
Line 232: Line 237:
  
 1. **Cloud Storage**: 1. **Cloud Storage**:
-   Modify `log_experimentto send logs to Amazon S3, Google Cloud Storage, or Azure Blob.+   Modify **log_experiment** to send logs to **Amazon S3****Google Cloud Storage**, or **Azure Blob**.
        
 2. **Database Integration**: 2. **Database Integration**:
-   Replace file storage with SQL/NoSQL databases for scalable operations.+   Replace file storage with **SQL/NoSQL** databases for scalable operations.
  
 3. **Real-Time Monitoring**: 3. **Real-Time Monitoring**:
-   Stream results into a dashboard for live experiment tracking.+   Stream results into a dashboard for live experiment tracking.
  
 4. **Summarized Logging**: 4. **Summarized Logging**:
-   Automatically summarize metrics (e.g., show only the top 5 accuracies).+   Automatically summarize metrics (e.g., show only the top 5 accuracies).
  
 ===== Best Practices ===== ===== Best Practices =====
experiments.1748610290.txt.gz · Last modified: 2025/05/30 13:04 by eagleeyenebula