User Tools

Site Tools


experiments

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
experiments [2025/04/23 02:19] eagleeyenebulaexperiments [2025/06/06 12:53] (current) – [Experiment Manager] eagleeyenebula
Line 1: Line 1:
 ====== Experiment Manager ====== ====== Experiment Manager ======
 +**[[https://autobotsolutions.com/god/templates/index.1.html|More Developers Docs]]**:
 +The AI Experiment Manager system is responsible for managing and logging configurations, results, and metadata for experiments, serving as the central hub for tracking the lifecycle of experimental workflows. By capturing every variable, parameter, and outcome, it ensures that each experiment is fully traceable and reproducible critical qualities for scientific rigor, iterative development, and compliance in regulated environments. Whether running isolated tests or large-scale batch experiments, the system enables researchers and developers to track progress, compare outcomes, and make informed decisions based on structured, historical data.
  
-The **Experiment Manager** is a robust and modular system designed to manage and log experiment configurations, results, and metadata efficiently. The system is key to enabling reproducibility, traceability, and analysis of experimental workflows, making it a vital component for research and production environments.+{{youtube>ecLP_X2D16M?large}}
  
 +-------------------------------------------------------------
 +
 +Built with flexibility and performance in mind, the Experiment Manager supports versioning of configurations, tagging of experimental runs, and integration with external tools such as model registries, monitoring platforms, and data visualization dashboards. It can accommodate a variety of experiment types from hyperparameter tuning in machine learning models to performance benchmarking in software systems. Through its modular architecture, users can define custom logging behavior, attach contextual metadata, and link results with code snapshots or datasets. This not only promotes reproducibility but also accelerates collaboration and knowledge sharing across teams. With the Experiment Manager, experimentation becomes a disciplined, transparent, and scalable process aligned with best practices in modern research and development workflows.
 ===== Overview ===== ===== Overview =====
  
-The **Experiment Manager** ensures that all essential details regarding experiments are properly logged and stored for further review and analysis. It is implemented in Python and works seamlessly with both local storage and extensible systems (databases, cloud, etc.).+The Experiment Manager provides the following functionalities:
  
-==== Key Features ==== +  * **Centralized Experiment Logging**: 
- +    Consistently logs experiment configurations and results for future analysis. 
-  * **Comprehensive Experiment Logging**: +  * **Scalable Storage**: 
-    Logs configurations and results for individual or batch experiments into JSON fileswhich makes it easy to import or process later.+    Experiment results are saved in JSON formatensuring compatibility with analytics tools.
   * **Error-Resilient Design**:   * **Error-Resilient Design**:
-    Handles potential errors during the logging process, ensuring smooth execution in production+    Safeguards against runtime exceptions or storage errors. 
-  * **Metadata Support**: +  * **Customizable Metadata**: 
-    Includes options for timestamps, experiment IDs, and custom metadata to provide detailed documentation for each experiment. +    Supports the addition of metadata such as timestamps, unique IDs, and runtime environments.
-  * **Customizable Storage**: +
-    By default, logs experiments to a JSON file, but it can be modified for databases or cloud integrations. +
-  * **Ease of Integration**: +
-    Simple, static methods allow for quickly adding logging functionality to any research or development pipeline.+
  
-===== Purpose =====+==== Key Features ====
  
-The **Goal** of the system is to+  * **Reproducible Research**:  
-  1. **Organize Experimental Data**: +    Logs every detail necessary to reproduce results. 
-      Log experiments consistently for traceability and reproducibility+  * **Batch Processing**:  
-  2. **Improve Automation**: +    Allows multiple experiments to be tracked simultaneously
-      Provide automated tools to reduce the manual overhead of managing experiment logs. +  * **Custom Storage Paths**:  
-  3. **Enable Scalability**: +    Configuration to save logs in default or custom directories
-      Handle small-scale and large-scale projects by modular design. +  * **Extendable Architecture**: 
-  4. **Enhance Results Visibility**: +    Integrates easily with cloud solutions or databases for advanced storage and analysis.
-      Use structured data storage for visualization, analysis, and reporting.+
  
 ===== System Design ===== ===== System Design =====
  
-The **Experiment Manager** uses core Python libraries (`loggingand `json`) to handle structured data storage and error handling.+The Experiment Manager consists of a single lightweight class **ExperimentManager**. It features a static method, `log_experiment`, which performs the following:
  
-==== Core Design: ExperimentManager Class ====+1. Takes in **experiment configurations** and **results** in dictionary format.
  
-The `ExperimentManager` class implements a static method `log_experiment` that takes the following parameters:+2. Serializes the data into structured **JSON**.
  
-  * **config** (`dict`): The details of the experiment configuration (e.g.model parameters). +3. Appends the **JSON** data to the specified filedefaulting to **experiment_logs.jso**.
-  * **results** (`dict`): The outcomes and metrics of the experiment (e.g., accuracy, F1 score). +
-  * **file_path** (`str`): The JSON file path where the logs are stored. (Default: `experiment_logs.json`)+
  
-<nowiki>+Code snippet for the **ExperimentManager** class: 
 + 
 +<code> 
 +python
 import logging import logging
 import json import json
Line 51: Line 52:
 class ExperimentManager: class ExperimentManager:
     """     """
-    Manages experiments, from setup to result tracking.+    Manages experiments, from setup to result logging.
     """     """
  
Line 57: Line 58:
     def log_experiment(config, results, file_path="experiment_logs.json"):     def log_experiment(config, results, file_path="experiment_logs.json"):
         """         """
-        Logs configurations and results of an experiment.+        Logs configuration and results of an experiment.
  
-        :param config: Configuration of the experiment +        :param config: Dictionary containing experimental configurations. 
-        :param results: Results obtained from the experiment +        :param results: Dictionary containing experimental results. 
-        :param file_path: Path to save the experiment log+        :param file_path: File path for saving the experiment log.
         """         """
         logging.info("Logging experiment data...")         logging.info("Logging experiment data...")
         try:         try:
 +            # Serialize and append experiment data
             experiment_data = {"config": config, "results": results}             experiment_data = {"config": config, "results": results}
             with open(file_path, "a") as log_file:             with open(file_path, "a") as log_file:
                 json.dump(experiment_data, log_file, indent=4)                 json.dump(experiment_data, log_file, indent=4)
                 log_file.write("\n")                 log_file.write("\n")
-            logging.info("Experiment data logged successfully.")+            logging.info("Experiment logged successfully.")
         except Exception as e:         except Exception as e:
-            logging.error(f"Failed to log experiment data: {e}"+            logging.error(f"Error logging experiment: {e}"
-</nowiki> +</code>
- +
-The experiment data is appended as structured JSON into the specified file, enabling easy processing later.+
  
 ===== Usage Examples ===== ===== Usage Examples =====
  
-The system can be used for individual experiments as well as batch processing. +Below are several usage examplesEach demonstrates how to use the Experiment Manager system effectively.
- +
-==== Example 1: Basic Experiment Logging ====+
  
-In this example, we log basic experiment with model configuration and its results.+==== Example 1: Logging Simple Experiment ====
  
-<nowiki>+<code> 
 +python
 from experiment_manager import ExperimentManager from experiment_manager import ExperimentManager
  
-experiment_config = {+# Define the experiment configuration and results 
 +config = {
     "model": "RandomForest",     "model": "RandomForest",
     "hyperparameters": {     "hyperparameters": {
         "n_estimators": 100,         "n_estimators": 100,
-        "max_depth": 10+        "max_depth": 10,
     },     },
     "dataset": "dataset_v1.csv"     "dataset": "dataset_v1.csv"
 } }
  
-experiment_results = { +results = { 
-    "accuracy": 0.89+    "accuracy": 0.85
-    "f1_score": 0.87+    "f1_score": 0.88
 } }
  
-# Log the experiment to the default file +# Log the experiment 
-ExperimentManager.log_experiment(experiment_configexperiment_results)+ExperimentManager.log_experiment(configresults)
 print("Experiment logged successfully!") print("Experiment logged successfully!")
-</nowiki> 
  
-**Logged JSON Output**: +</code> 
-```json+ 
 +**Logged JSON Output (in `experiment_logs.json`):** 
 + 
 +<code> 
 +json
 { {
     "config": {     "config": {
Line 118: Line 121:
     },     },
     "results": {     "results": {
-        "accuracy": 0.89+        "accuracy": 0.85
-        "f1_score": 0.87+        "f1_score": 0.88
     }     }
 } }
-``` 
  
-==== Example 2: Custom File Path ====+</code>
  
-Change the log file location by specifying the `file_path` parameter.+==== Example 2: Saving Logs to Custom Files ====
  
-<nowiki> +Specify a custom log file for storing experiment logs.
-experiment_config = {"model": "SVM", "parameters": {"C": 1.0, "kernel": "linear"}} +
-experiment_results = {"accuracy": 0.93}+
  
-# Save to a custom location +<code> 
-custom_file = "path/to/custom_experiment_log.json"+python 
 +config 
 +    "model": "SVM", 
 +    "kernel": "linear", 
 +    "C": 1.0 
 +}
  
-ExperimentManager.log_experiment(experiment_config, experiment_results, file_path=custom_file) +results 
-</nowiki>+    "accuracy": 0.89 
 +}
  
-This stores the JSON data in the provided file path.+# Specify file path for logs 
 +file_path = "custom_logs/svm_experiment.json" 
 +ExperimentManager.log_experiment(config, results, file_path=file_path)
  
-==== Example 3: Adding Metadata ====+</code>
  
-To log additional metadata like timestamps or unique IDs for each experiment, extend the configuration dictionary.+==== Example 3: Adding Metadata to Experiments ====
  
-<nowiki>+To improve traceability, you can add metadata like timestamps or unique IDs. 
 + 
 +<code> 
 +python
 import datetime import datetime
 import uuid import uuid
 +from experiment_manager import ExperimentManager
  
-experiment_config = { +config = { 
-    "model": "LogisticRegression"+    "model": "LogisticRegression"
 +    "parameters": {}
 } }
  
-experiment_results = { +results = {"accuracy": 0.80}
-    "accuracy": 0.85 +
-}+
  
-Add metadata +Adding metadata 
-experiment_config["metadata"] = {+config["metadata"] = {
     "timestamp": datetime.datetime.now().isoformat(),     "timestamp": datetime.datetime.now().isoformat(),
     "experiment_id": str(uuid.uuid4())     "experiment_id": str(uuid.uuid4())
 } }
  
-ExperimentManager.log_experiment(experiment_configexperiment_results) +ExperimentManager.log_experiment(configresults)
-</nowiki>+
  
-**Enhanced JSON Output Example**: +</code> 
-```json+ 
 +**Logged JSON Output with Metadata:** 
 + 
 +<code> 
 +json
 { {
     "config": {     "config": {
         "model": "LogisticRegression",         "model": "LogisticRegression",
 +        "parameters": {},
         "metadata": {         "metadata": {
-            "timestamp": "2023-10-12T12:34:56.789Z", +            "timestamp": "2023-10-12T10:30:45.678901", 
-            "experiment_id": "e75d48e8-b406-11ed-afa1-0242ac120002"+            "experiment_id": "f78b2782-2342-433c-b4da-9a5e5c6f023f"
         }         }
     },     },
     "results": {     "results": {
-        "accuracy": 0.85+        "accuracy": 0.80
     }     }
 } }
-```+ 
 +</code>
  
 ==== Example 4: Batch Logging of Multiple Experiments ==== ==== Example 4: Batch Logging of Multiple Experiments ====
  
-Log multiple experiments in a batch using iteration.+Log multiple experiments in a batch:
  
-<nowiki+<code
-experiment_batches = [ +python 
-    {"config": {"model": "KNN", "k": 5}, "results": {"accuracy": 0.82}}, +batch = [ 
-    {"config": {"model": "GradientBoosting", "learning_rate": 0.05}, "results": {"accuracy": 0.91}}+    { 
 +        "config": {"model": "DecisionTree", "max_depth": 8}, 
 +        "results": {"accuracy": 0.78} 
 +    }, 
 +    { 
 +        "config": {"model": "KNN", "neighbors": 5}, 
 +        "results": {"accuracy": 0.81} 
 +    }
 ] ]
  
-for experiment in experiment_batches:+for experiment in batch:
     ExperimentManager.log_experiment(experiment["config"], experiment["results"])     ExperimentManager.log_experiment(experiment["config"], experiment["results"])
-</nowiki> 
  
-==== Example 5: Enhanced Error Handling ====+</code>
  
-Handle issues gracefully when file paths or permissions are incorrect.+==== Example 5: Error Handling ====
  
-<nowiki>+To handle potential logging errors (e.g., invalid paths): 
 + 
 +<code> 
 +python
 try: try:
-    ExperimentManager.log_experiment({"model": "XGB"}, {"accuracy": 0.88}, file_path="/restricted_path/log.json")+    ExperimentManager.log_experiment({"model": "XGBoost"}, {"accuracy": 0.94}, file_path="/invalid/path.json")
 except Exception as e: except Exception as e:
-    print(f"Failed to log due to: {e}") +    print(f"Logging failed: {e}")
-</nowiki>+
  
-===== Advanced Features =====+</code>
  
-1. **Cloud Storage**: Save logs directly in storage services like AWS S3 or Azure Blob. +===== Advanced Functionality ===== 
-2. **Database Integration**: Replace JSON files with SQL/NoSQL storage+ 
-3. **Live Visualization**: Use log files to feed dashboards using libraries like Dash/Streamlit+The system can be extended to: 
-4. **Log Summarization**: Automatically summarize experiment logs with key statistics.+ 
 +1. **Cloud Storage**: 
 +   * Modify **log_experiment** to send logs to **Amazon S3**, **Google Cloud Storage**, or **Azure Blob**. 
 +    
 +2. **Database Integration**: 
 +   Replace file storage with **SQL/NoSQL** databases for scalable operations. 
 + 
 +3. **Real-Time Monitoring**: 
 +   * Stream results into a dashboard for live experiment tracking. 
 + 
 +4. **Summarized Logging**: 
 +   Automatically summarize metrics (e.g., show only the top 5 accuracies). 
 + 
 +===== Best Practices ===== 
 + 
 +  * **Add Metadata**: Include timestamps and unique IDs for better traceability. 
 +  * **Backup Logs**: Regularly archive logs into remote storage to avoid data loss. 
 +  * **Validate Input**: Ensure your `config` and `results` follow a consistent structure.
  
 ===== Conclusion ===== ===== Conclusion =====
  
-The **Experiment Manager** is highly modular and scalable solution for managing experiment logsWith its extensibility and practical design, it fits perfectly in any research or industrial application that requires traceability and reproducibility.+The AI Experiment Manager provides a systematic approach to tracking experiments, ensuring reproducibility, scalability, and traceability throughout the entire experimentation **lifecycle**. By capturing configurations, inputs, execution contexts, and results in structured and searchable format, it eliminates guesswork and supports rigorous comparison between experiment runsWhether you're tuning **hyperparameters**, evaluating new algorithms, or testing system performance under different conditions, the Experiment Manager brings clarity and consistency to complexiterative workflows. 
 + 
 +Its flexible, extensible design makes it an essential tool for anyone conducting experiments in machine learning, software development, or research pipelines. It seamlessly integrates with a wide range of tools and frameworks, allowing users to log metrics, artifacts, datasets, and even environment snapshots. Support for tagging, version control, and hierarchical experiment grouping makes organizing and scaling experiments intuitive, even across large teams or long-term projects. In addition, built-in visualizations and export features make it easy to interpret trends, share findings, and report outcomes. With the Experiment Manager, experimentation becomes a first-class, collaborative process enabling faster innovation, reduced duplication of effort, and deeper insights into what drives results.
experiments.1745374758.txt.gz · Last modified: 2025/04/23 02:19 by eagleeyenebula