User Tools

Site Tools


experiments

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
experiments [2025/04/23 02:17] eagleeyenebulaexperiments [2025/06/06 12:53] (current) – [Experiment Manager] eagleeyenebula
Line 1: Line 1:
 ====== Experiment Manager ====== ====== Experiment Manager ======
 +**[[https://autobotsolutions.com/god/templates/index.1.html|More Developers Docs]]**:
 +The AI Experiment Manager system is responsible for managing and logging configurations, results, and metadata for experiments, serving as the central hub for tracking the lifecycle of experimental workflows. By capturing every variable, parameter, and outcome, it ensures that each experiment is fully traceable and reproducible critical qualities for scientific rigor, iterative development, and compliance in regulated environments. Whether running isolated tests or large-scale batch experiments, the system enables researchers and developers to track progress, compare outcomes, and make informed decisions based on structured, historical data.
  
-The **Experiment Manager** system provides a structured and extensible solution for managing experiments by logging configurations, results, and metadata in a reproducible and scalable way. This enables researchers to ensure traceability of experiments while seamlessly integrating into machine learning or research workflows.+{{youtube>ecLP_X2D16M?large}}
  
 +-------------------------------------------------------------
 +
 +Built with flexibility and performance in mind, the Experiment Manager supports versioning of configurations, tagging of experimental runs, and integration with external tools such as model registries, monitoring platforms, and data visualization dashboards. It can accommodate a variety of experiment types from hyperparameter tuning in machine learning models to performance benchmarking in software systems. Through its modular architecture, users can define custom logging behavior, attach contextual metadata, and link results with code snapshots or datasets. This not only promotes reproducibility but also accelerates collaboration and knowledge sharing across teams. With the Experiment Manager, experimentation becomes a disciplined, transparent, and scalable process aligned with best practices in modern research and development workflows.
 ===== Overview ===== ===== Overview =====
  
-The Experiment Manager simplifies the process of: +The Experiment Manager provides the following functionalities:
-  * Logging experimental configurations and results in a consistent, structured format. +
-  * Storing logs in a JSON file for further analysis or sharing. +
-  * Extending functionality to include additional metadata or integrate with different storage backends.+
  
-This documentation provides instructions for using the Experiment Manager system efficiently, with advanced examples and practical usage guidance.+  * **Centralized Experiment Logging**: 
 +    Consistently logs experiment configurations and results for future analysis. 
 +  * **Scalable Storage**: 
 +    Experiment results are saved in JSON formatensuring compatibility with analytics tools. 
 +  * **Error-Resilient Design**: 
 +    Safeguards against runtime exceptions or storage errors. 
 +  * **Customizable Metadata**: 
 +    Supports the addition of metadata such as timestamps, unique IDs, and runtime environments.
  
 ==== Key Features ==== ==== Key Features ====
  
-  * **Customizable Experiment Logs**: Logs detailed configuration and results for experiments while supporting additional metadata on demand+  * **Reproducible Research**:  
-  * **Error Handling**: Ensures logging failures do not interrupt the larger process+    Logs every detail necessary to reproduce results. 
-  * **JSON-Based Logs**: Outputs scalable and structured data compatible with visualization and analytics tools. +  * **Batch Processing**:  
-  * **Extensibility**: Easy to extend or adapt for complex workflows+    Allows multiple experiments to be tracked simultaneously
-  * **Plug-and-Play Design**: Simple integration into research pipelines or machine learning processes.+  * **Custom Storage Paths**:  
 +    Configuration to save logs in default or custom directories
 +  * **Extendable Architecture**: 
 +    Integrates easily with cloud solutions or databases for advanced storage and analysis.
  
-===== Purpose and Goals =====+===== System Design =====
  
-The Experiment Manager was designed to: +The Experiment Manager consists of a single lightweight class **ExperimentManager**. It features a static method`log_experiment`which performs the following:
-1. **Facilitate Reproducibility**: Record complete experiment details for accurate reproduction of results. +
-2. **Enable Systematic Logging**: Automate the tracking of configurations and results to reduce human error. +
-3. **Support Scalable Workflows**: Handle multiple experiments with ease. +
-4. **Empower Transparent Research**: Maintain an accessible log of experiments for analysissharingor validation.+
  
-===== System Design =====+1. Takes in **experiment configurations** and **results** in dictionary format. 
 + 
 +2. Serializes the data into structured **JSON**.
  
-The Experiment Manager relies on Python'**logging** and **json** modules to ensure: +3. Appends the **JSON** data to the specified file, defaulting to **experiment_logs.jso**.
-  * **Structured Output**: All experiments are appended as JSON objects into a log file. +
-  * **Seamless Processing**: The system is ready for extensions, from cloud integrations to storage backends like databases.+
  
-Here is the core implementation:+Code snippet for the **ExperimentManager** class:
  
-<nowiki>+<code> 
 +python
 import logging import logging
 import json import json
Line 43: Line 52:
 class ExperimentManager: class ExperimentManager:
     """     """
-    Handles experiment management: logs configurations and results.+    Manages experiments, from setup to result logging.
     """     """
  
Line 49: Line 58:
     def log_experiment(config, results, file_path="experiment_logs.json"):     def log_experiment(config, results, file_path="experiment_logs.json"):
         """         """
-        Logs an experiment's configurations and results into a file.+        Logs configuration and results of an experiment.
  
-        :param config: Dictionary describing the experiment's settings+        :param config: Dictionary containing experimental configurations
-        :param results: Dictionary representing the outcomes of the experiment+        :param results: Dictionary containing experimental results
-        :param file_path: Path to save the experiment log (default = experiment_logs.json).+        :param file_path: File path for saving the experiment log.
         """         """
         logging.info("Logging experiment data...")         logging.info("Logging experiment data...")
         try:         try:
 +            # Serialize and append experiment data
             experiment_data = {"config": config, "results": results}             experiment_data = {"config": config, "results": results}
             with open(file_path, "a") as log_file:             with open(file_path, "a") as log_file:
                 json.dump(experiment_data, log_file, indent=4)                 json.dump(experiment_data, log_file, indent=4)
                 log_file.write("\n")                 log_file.write("\n")
-            logging.info("Experiment data logged successfully.")+            logging.info("Experiment logged successfully.")
         except Exception as e:         except Exception as e:
-            logging.error(f"Failed to log experiment data: {e}"+            logging.error(f"Error logging experiment: {e}"
-</nowiki>+</code>
  
-===== Implementation and Usage =====+===== Usage Examples =====
  
-==== Example 1: Logging a Basic Experiment ====+Below are several usage examples. Each demonstrates how to use the Experiment Manager system effectively.
  
-Log single experiment with a simple configuration and results. +==== Example 1: Logging Simple Experiment ====
  
-<nowiki>+<code> 
 +python
 from experiment_manager import ExperimentManager from experiment_manager import ExperimentManager
  
-experiment_config = {+# Define the experiment configuration and results 
 +config = {
     "model": "RandomForest",     "model": "RandomForest",
     "hyperparameters": {     "hyperparameters": {
         "n_estimators": 100,         "n_estimators": 100,
-        "max_depth": 10+        "max_depth": 10,
     },     },
-    "dataset": "train_v1.csv"+    "dataset": "dataset_v1.csv"
 } }
  
-experiment_results = { +results = { 
-    "accuracy": 0.89+    "accuracy": 0.85
-    "f1_score": 0.87+    "f1_score": 0.88
 } }
  
 # Log the experiment # Log the experiment
-ExperimentManager.log_experiment(experiment_configexperiment_results)+ExperimentManager.log_experiment(configresults)
 print("Experiment logged successfully!") print("Experiment logged successfully!")
-</nowiki> 
  
-**Expected JSON Output (Default: `experiment_logs.json`):**+</code>
  
-```json+**Logged JSON Output (in `experiment_logs.json`):** 
 + 
 +<code> 
 +json
 { {
     "config": {     "config": {
Line 104: Line 118:
             "max_depth": 10             "max_depth": 10
         },         },
-        "dataset": "train_v1.csv"+        "dataset": "dataset_v1.csv"
     },     },
     "results": {     "results": {
-        "accuracy": 0.89+        "accuracy": 0.85
-        "f1_score": 0.87+        "f1_score": 0.88
     }     }
 } }
-``` 
  
-==== Example 2: Using a Custom Log File ====+</code>
  
-Change the storage location for experiment logs by supplying a different file path.+==== Example 2: Saving Logs to Custom Files ====
  
-<nowiki+Specify a custom log file for storing experiment logs. 
-experiment_config = {+ 
 +<code
 +python 
 +config = {
     "model": "SVM",     "model": "SVM",
-    "parameters": { +    "kernel": "linear", 
-        "C": 1.0+    "C": 1.0
-        "kernel": "linear" +
-    }+
 } }
  
-experiment_results = { +results = { 
-    "accuracy": 0.91+    "accuracy": 0.89
 } }
  
-# Specify a custom path for logging +# Specify file path for logs 
-custom_file_path = "logs/svm_experiment.json"+file_path = "custom_logs/svm_experiment.json" 
 +ExperimentManager.log_experiment(config, results, file_path=file_path)
  
-ExperimentManager.log_experiment(experiment_config, experiment_results, file_path=custom_file_path) +</code>
-</nowiki>+
  
-**JSON Output (Example: `logs/svm_experiment.json`):** +==== Example 3Adding Metadata to Experiments ====
-```json +
-+
-    "config":+
-        "model": "SVM", +
-        "parameters":+
-            "C": 1.0, +
-            "kernel": "linear" +
-        } +
-    }, +
-    "results":+
-        "accuracy": 0.91 +
-    } +
-+
-```+
  
-==== Example 3: Enhanced Logging with Metadata ====+To improve traceability, you can add metadata like timestamps or unique IDs.
  
-Add additional fields like `timestamp` or `experiment_id` for traceability. +<code> 
- +python
-<nowiki>+
 import datetime import datetime
 import uuid import uuid
 from experiment_manager import ExperimentManager from experiment_manager import ExperimentManager
  
-experiment_config = {"model": "Logistic Regression"} +config = { 
-experiment_results = {"accuracy": 0.85}+    "model": "LogisticRegression", 
 +    "parameters": {} 
 +}
  
-# Add metadata +results {"accuracy": 0.80}
-timestamp datetime.datetime.now().isoformat() +
-experiment_id = str(uuid.uuid4())+
  
-experiment_config["metadata"] = { +# Adding metadata 
-    "timestamp": timestamp+config["metadata"] = { 
-    "experiment_id": experiment_id+    "timestamp": datetime.datetime.now().isoformat()
 +    "experiment_id": str(uuid.uuid4())
 } }
  
-# Log with metadata +ExperimentManager.log_experiment(configresults)
-ExperimentManager.log_experiment(experiment_configexperiment_results) +
-</nowiki>+
  
-**Enhanced JSON Output:** +</code> 
-```json+ 
 +**Logged JSON Output with Metadata:** 
 + 
 +<code> 
 +json
 { {
     "config": {     "config": {
-        "model": "Logistic Regression",+        "model": "LogisticRegression"
 +        "parameters": {},
         "metadata": {         "metadata": {
-            "timestamp": "2023-10-12T12:34:56.789123", +            "timestamp": "2023-10-12T10:30:45.678901", 
-            "experiment_id": "b1c95b89-d03e-4d5e-832f-4a5d4124e238"+            "experiment_id": "f78b2782-2342-433c-b4da-9a5e5c6f023f"
         }         }
     },     },
     "results": {     "results": {
-        "accuracy": 0.85+        "accuracy": 0.80
     }     }
 } }
-```+ 
 +</code>
  
 ==== Example 4: Batch Logging of Multiple Experiments ==== ==== Example 4: Batch Logging of Multiple Experiments ====
  
-Log a pipeline of experiments in a batch for better efficiency.+Log multiple experiments in a batch:
  
-<nowiki+<code
-experiments = [+python 
 +batch = [
     {     {
-        "config": {"model": "KNN", "parameters": {"k": 3}},+        "config": {"model": "DecisionTree", "max_depth": 8},
         "results": {"accuracy": 0.78}         "results": {"accuracy": 0.78}
     },     },
     {     {
-        "config": {"model": "XGBoost", "parameters": {"learning_rate": 0.01}}, +        "config": {"model": "KNN", "neighbors": 5}, 
-        "results": {"accuracy": 0.92}+        "results": {"accuracy": 0.81}
     }     }
 ] ]
  
-for experiment in experiments:+for experiment in batch:
     ExperimentManager.log_experiment(experiment["config"], experiment["results"])     ExperimentManager.log_experiment(experiment["config"], experiment["results"])
-</nowiki> 
  
-===== Advanced Features =====+</code>
  
-1. **Extensible Storage Backends**: +==== Example 5: Error Handling ==== 
-   Use SQLitePostgreSQL, or NoSQL databases like MongoDB for logging large datasets.+ 
 +To handle potential logging errors (e.g., invalid paths): 
 + 
 +<code> 
 +python 
 +try: 
 +    ExperimentManager.log_experiment({"model": "XGBoost"}, {"accuracy": 0.94}, file_path="/invalid/path.json"
 +except Exception as e: 
 +    print(f"Logging failed: {e}"
 + 
 +</code> 
 + 
 +===== Advanced Functionality ===== 
 + 
 +The system can be extended to: 
 + 
 +1. **Cloud Storage**: 
 +   * Modify **log_experiment** to send logs to **Amazon S3****Google Cloud Storage**, or **Azure Blob**.
        
-2. **Integrations with Cloud Storage**: +2. **Database Integration**: 
-   Save experiment logs to cloud-based solutions like AWS S3, Azure Blob, or Google Drive.+   * Replace file storage with **SQL/NoSQL** databases for scalable operations.
  
-3. **Data Visualization**: +3. **Real-Time Monitoring**: 
-   Process logged experiments to easily generate analysis or plots with Seaborn, Matplotlib, or Plotly.+   * Stream results into a dashboard for live experiment tracking.
  
-4. **Summarization Tools**: +4. **Summarized Logging**: 
-   Include summarization techniques to extract key metrics (e.g., highest accuracy).+   * Automatically summarize metrics (e.g., show only the top 5 accuracies).
  
 ===== Best Practices ===== ===== Best Practices =====
  
-  * Always define custom **experiment IDs** for traceability in larger pipelines+  * **Add Metadata**: Include timestamps and unique IDs for better traceability. 
-  * Regularly back up your logs to avoid data loss. +  * **Backup Logs**: Regularly archive logs into remote storage to avoid data loss. 
-  * Use **structured metadata** to inject contextual details (e.g., timestamps, execution environments).+  * **Validate Input**: Ensure your `config` and `results` follow a consistent structure.
  
 ===== Conclusion ===== ===== Conclusion =====
  
-The **Experiment Manager** offers an efficient methodology to logmanage, and analyze experimental data. Whether you manage smallstandalone experiments or massive machine learning pipelines, the system is customizable and extensible to fit your needs.+The AI Experiment Manager provides a systematic approach to tracking experiments, ensuring reproducibility, scalability, and traceability throughout the entire experimentation **lifecycle**. By capturing configurationsinputsexecution contexts, and results in a structured and searchable format, it eliminates guesswork and supports rigorous comparison between experiment runs. Whether you're tuning **hyperparameters**, evaluating new algorithms, or testing system performance under different conditions, the Experiment Manager brings clarity and consistency to complex, iterative workflows. 
 + 
 +Its flexible, extensible design makes it an essential tool for anyone conducting experiments in machine learning, software development, or research pipelines. It seamlessly integrates with a wide range of tools and frameworks, allowing users to log metrics, artifacts, datasets, and even environment snapshots. Support for tagging, version control, and hierarchical experiment grouping makes organizing and scaling experiments intuitive, even across large teams or long-term projects. In addition, built-in visualizations and export features make it easy to interpret trends, share findings, and report outcomes. With the Experiment Manager, experimentation becomes a first-class, collaborative process enabling faster innovation, reduced duplication of effort, and deeper insights into what drives results.
experiments.1745374639.txt.gz · Last modified: 2025/04/23 02:17 by eagleeyenebula