User Tools

Site Tools


experiments

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
experiments [2025/04/23 02:15] eagleeyenebulaexperiments [2025/06/06 12:53] (current) – [Experiment Manager] eagleeyenebula
Line 1: Line 1:
 ====== Experiment Manager ====== ====== Experiment Manager ======
 +**[[https://autobotsolutions.com/god/templates/index.1.html|More Developers Docs]]**:
 +The AI Experiment Manager system is responsible for managing and logging configurations, results, and metadata for experiments, serving as the central hub for tracking the lifecycle of experimental workflows. By capturing every variable, parameter, and outcome, it ensures that each experiment is fully traceable and reproducible critical qualities for scientific rigor, iterative development, and compliance in regulated environments. Whether running isolated tests or large-scale batch experiments, the system enables researchers and developers to track progress, compare outcomes, and make informed decisions based on structured, historical data.
  
-The **Experiment Manager** is a robust system designed to log and manage experimental configurations and results systematically. It enables reproducibility and traceability of machine learning, research, or analytical experiments by storing detailed logs of configurations, results, and metadata.+{{youtube>ecLP_X2D16M?large}}
  
 +-------------------------------------------------------------
 +
 +Built with flexibility and performance in mind, the Experiment Manager supports versioning of configurations, tagging of experimental runs, and integration with external tools such as model registries, monitoring platforms, and data visualization dashboards. It can accommodate a variety of experiment types from hyperparameter tuning in machine learning models to performance benchmarking in software systems. Through its modular architecture, users can define custom logging behavior, attach contextual metadata, and link results with code snapshots or datasets. This not only promotes reproducibility but also accelerates collaboration and knowledge sharing across teams. With the Experiment Manager, experimentation becomes a disciplined, transparent, and scalable process aligned with best practices in modern research and development workflows.
 ===== Overview ===== ===== Overview =====
  
-The Experiment Manager provides flexible tools to:+The Experiment Manager provides the following functionalities:
  
-  * Log experiment configurations and their results in a standardized format+  * **Centralized Experiment Logging**: 
-  * Maintain detailed experiment records for reproducibility and analysis+    Consistently logs experiment configurations and results for future analysis
-  * Extend logging capabilities to include custom workflows, metadata, or storage solutions+  * **Scalable Storage**: 
-  * Handle errors during the logging process gracefully without disturbing core workflows. +    Experiment results are saved in JSON format, ensuring compatibility with analytics tools
- +  * **Error-Resilient Design**: 
-Data is stored in JSON formatenabling seamless integration with external tools for visualizationquerying, or storage.+    Safeguards against runtime exceptions or storage errors
 +  * **Customizable Metadata**: 
 +    Supports the addition of metadata such as timestampsunique IDsand runtime environments.
  
 ==== Key Features ==== ==== Key Features ====
  
-  * **Centralized Logging**: Configurations and results are stored efficiently+  * **Reproducible Research**:  
-  * **JSON Storage**: Compatible with modern data analysis workflows+    Logs every detail necessary to reproduce results. 
-  * **Error Handling**: Built-in mechanisms to handle failures during logging+  * **Batch Processing**:  
-  * **Extensibility**: Add custom metadata like timestamps, experiment IDs, or advanced storage backends (databases or cloud storage). +    Allows multiple experiments to be tracked simultaneously
-  * **Easy Integration**: Plug-and-play architecture for research pipelines and machine learning workflows. +  * **Custom Storage Paths**:  
- +    Configuration to save logs in default or custom directories
-===== Purpose and Goals ===== +  * **Extendable Architecture**: 
- +    Integrates easily with cloud solutions or databases for advanced storage and analysis.
-The following are the core objectives of the Experiment Manager: +
- +
-1. **Reproducibility**: Captures all the required details to reproduce experimental results. +
-2. **Traceability**: Logs serve as a complete record of all experiments conducted. +
-3. **Automation**: Simplifies the logging of results, freeing up developers and researchers to focus on experiments. +
-4. **Scalability**: Handles large-scale tracking of thousands of experiments.+
  
 ===== System Design ===== ===== System Design =====
  
-The Experiment Manager is built using Python's core functionality:+The Experiment Manager consists of a single lightweight class **ExperimentManager**. It features a static method, `log_experiment`, which performs the following:
  
-  * **JSON Module**: To structure and save experiment data. +1. Takes in **experiment configurations** and **results** in dictionary format.
-  * **Logging Module**: To ensure a detailed error-tracking mechanism. +
-  * **Static Methods**: Provides modular, reusable, and extensible methods for managing experiments.+
  
-==== Core Class: ExperimentManager ====+2. Serializes the data into structured **JSON**.
  
-The main class`ExperimentManager`, provides all core functionality.+3. Appends the **JSON** data to the specified filedefaulting to **experiment_logs.jso**.
  
-<nowiki>+Code snippet for the **ExperimentManager** class: 
 + 
 +<code> 
 +python
 import logging import logging
 import json import json
Line 50: Line 52:
 class ExperimentManager: class ExperimentManager:
     """     """
-    Manages experiments, from setup to result tracking.+    Manages experiments, from setup to result logging.
     """     """
  
Line 56: Line 58:
     def log_experiment(config, results, file_path="experiment_logs.json"):     def log_experiment(config, results, file_path="experiment_logs.json"):
         """         """
-        Logs configurations and results of an experiment.+        Logs configuration and results of an experiment.
  
-        :param config: Configuration settings for the experiment+        :param config: Dictionary containing experimental configurations
-        :param results: Results obtained from the experiment+        :param results: Dictionary containing experimental results
-        :param file_path: Path of the file to store the logs (default is 'experiment_logs.json').+        :param file_path: File path for saving the experiment log.
         """         """
         logging.info("Logging experiment data...")         logging.info("Logging experiment data...")
         try:         try:
 +            # Serialize and append experiment data
             experiment_data = {"config": config, "results": results}             experiment_data = {"config": config, "results": results}
             with open(file_path, "a") as log_file:             with open(file_path, "a") as log_file:
-                json.dump(experiment_data, log_file)+                json.dump(experiment_data, log_file, indent=4)
                 log_file.write("\n")                 log_file.write("\n")
-            logging.info("Experiment data logged successfully.")+            logging.info("Experiment logged successfully.")
         except Exception as e:         except Exception as e:
-            logging.error(f"Failed to log experiment data: {e}"+            logging.error(f"Error logging experiment: {e}"
-</nowiki>+</code>
  
-===== Implementation and Usage =====+===== Usage Examples =====
  
-The following examples demonstrate common use cases and scenarios for the Experiment Manager.+Below are several usage examples. Each demonstrates how to use the Experiment Manager system effectively.
  
-==== Example 1: Logging a Basic Experiment ====+==== Example 1: Logging a Simple Experiment ====
  
-Log experiment configurations and results into the default JSON log file. +<code> 
- +python
-<nowiki>+
 from experiment_manager import ExperimentManager from experiment_manager import ExperimentManager
  
-Experiment setup +Define the experiment configuration and results 
-experiment_config = {+config = {
     "model": "RandomForest",     "model": "RandomForest",
     "hyperparameters": {     "hyperparameters": {
         "n_estimators": 100,         "n_estimators": 100,
-        "max_depth": 10+        "max_depth": 10,
     },     },
     "dataset": "dataset_v1.csv"     "dataset": "dataset_v1.csv"
 } }
  
-experiment_results = { +results = { 
-    "overall_accuracy": 90.5+    "accuracy": 0.85
-    "f1_score": 0.87+    "f1_score": 0.88
 } }
  
 # Log the experiment # Log the experiment
-ExperimentManager.log_experiment(experiment_configexperiment_results)+ExperimentManager.log_experiment(configresults)
 print("Experiment logged successfully!") print("Experiment logged successfully!")
-</nowiki> 
  
-**Expected Output (experiment_logs.json)**: +</code> 
-<nowiki>+ 
 +**Logged JSON Output (in `experiment_logs.json`):** 
 + 
 +<code> 
 +json
 { {
     "config": {     "config": {
Line 116: Line 121:
     },     },
     "results": {     "results": {
-        "overall_accuracy": 90.5+        "accuracy": 0.85
-        "f1_score": 0.87+        "f1_score": 0.88
     }     }
 } }
-</nowiki> 
  
-==== Example 2: Customizing the Log File Path ====+</code>
  
-Specify a custom JSON file to store logs instead of the default file location.+==== Example 2: Saving Logs to Custom Files ====
  
-<nowiki> +Specify a custom log file for storing experiment logs.
-experiment_config = {"model": "SVM", "parameters": {"C": 1.0, "kernel": "linear"}} +
-experiment_results = {"accuracy": 87.2, "precision": 0.9}+
  
-# Specify a custom log file path +<code> 
-custom_log_path = "experiment_results/svm_experiment.json"+python 
 +config = { 
 +    "model": "SVM", 
 +    "kernel": "linear", 
 +    "C": 1.0 
 +
 + 
 +results = { 
 +    "accuracy": 0.89 
 +
 + 
 +# Specify file path for logs 
 +file_path = "custom_logs/svm_experiment.json" 
 +ExperimentManager.log_experiment(config, results, file_path=file_path)
  
-# Log experiment +</code>
-ExperimentManager.log_experiment(experiment_config, experiment_results, file_path=custom_log_path) +
-print("Experiment logged successfully at", custom_log_path) +
-</nowiki>+
  
 ==== Example 3: Adding Metadata to Experiments ==== ==== Example 3: Adding Metadata to Experiments ====
  
-Add metadata such as timestamps and unique IDs to the experiment log to improve traceability.+To improve traceability, you can add metadata like timestamps or unique IDs.
  
-<nowiki>+<code> 
 +python
 import datetime import datetime
 import uuid import uuid
 from experiment_manager import ExperimentManager from experiment_manager import ExperimentManager
  
-# Define experiment +config = { 
-experiment_config = {"model": "LogisticRegression"} +    "model": "LogisticRegression", 
-experiment_results = {"accuracy": 84.5}+    "parameters": {} 
 +}
  
-Generate metadata +results = {"accuracy": 0.80} 
-metadata = { + 
-    "timestamp": datetime.datetime.utcnow().isoformat(),+Adding metadata 
 +config["metadata"= { 
 +    "timestamp": datetime.datetime.now().isoformat(),
     "experiment_id": str(uuid.uuid4())     "experiment_id": str(uuid.uuid4())
 } }
  
-# Extend experiment configuration with metadata +ExperimentManager.log_experiment(config, results) 
-experiment_config["metadata"] = metadata+ 
 +</code>
  
-# Log experiment data +**Logged JSON Output with Metadata:**
-ExperimentManager.log_experiment(experiment_config, experiment_results) +
-print("Experiment with metadata logged successfully!"+
-</nowiki>+
  
-**Enhanced JSON Output**: +<code> 
-<nowiki>+json
 { {
     "config": {     "config": {
         "model": "LogisticRegression",         "model": "LogisticRegression",
 +        "parameters": {},
         "metadata": {         "metadata": {
-            "timestamp": "2023-10-11T13:00:00.000Z", +            "timestamp": "2023-10-12T10:30:45.678901", 
-            "experiment_id": "f47ac10b-58cc-4372-a567-0e02b2c3d479"+            "experiment_id": "f78b2782-2342-433c-b4da-9a5e5c6f023f"
         }         }
     },     },
     "results": {     "results": {
-        "accuracy": 84.5+        "accuracy": 0.80
     }     }
 } }
-</nowiki> 
  
-==== Example 4: Batch Experiment Logging ====+</code>
  
-Track multiple experiments programmatically in a loop.+==== Example 4: Batch Logging of Multiple Experiments ====
  
-<nowiki+Log multiple experiments in a batch: 
-experiments = [+ 
 +<code
 +python 
 +batch = [
     {     {
-        "config": {"model": "KNN", "parameters": {"k": 5}}, +        "config": {"model": "DecisionTree", "max_depth": 8}, 
-        "results": {"accuracy": 82.5}+        "results": {"accuracy": 0.78}
     },     },
     {     {
-        "config": {"model": "DecisionTree", "parameters": {"max_depth": 10}}, +        "config": {"model": "KNN", "neighbors": 5}, 
-        "results": {"accuracy": 89.0}+        "results": {"accuracy": 0.81}
     }     }
 ] ]
  
-# Log all experiments +for experiment in batch:
-for experiment in experiments:+
     ExperimentManager.log_experiment(experiment["config"], experiment["results"])     ExperimentManager.log_experiment(experiment["config"], experiment["results"])
  
-print("All experiments logged successfully!"+</code>
-</nowiki>+
  
-===== Advanced Features =====+==== Example 5: Error Handling ====
  
-1. **Custom Storage Backends**: +To handle potential logging errors (e.g., invalid paths):
-   Replace JSON files with more scalable databases like MySQL, SQLite, or MongoDB. +
-    +
-2. **Visualizations**: +
-   Integration with visualization tools (e.g., Matplotlib, Seabornfor result analysis.+
  
-3**Error Tracking**+<code> 
-   Improve logging with stack traces and contextual data for debugging failed experiments.+python 
 +try: 
 +    ExperimentManager.log_experiment({"model""XGBoost"}, {"accuracy": 0.94}, file_path="/invalid/path.json") 
 +except Exception as e: 
 +    print(f"Logging failed: {e}")
  
-4. **Cloud Integration**: +</code>
-   Export results directly to cloud services like AWS S3 or Google Drive for remote storage.+
  
-5. **Automatic Summarization**: +===== Advanced Functionality =====
-   Automatically generate a summary of experiment results (optional feature to add).+
  
-===== Future Enhancements =====+The system can be extended to:
  
-1. **Query Interface**: +1. **Cloud Storage**: 
-   Provide a built-in mechanism to query experiment logs (e.g.search for top 10 results).+   * Modify **log_experiment** to send logs to **Amazon S3****Google Cloud Storage**, or **Azure Blob**.
        
-2. **Configuration Validation**: +2. **Database Integration**: 
-   Automatically validate configurations to prevent invalid entries+   * Replace file storage with **SQL/NoSQL** databases for scalable operations
-    + 
-3. **Real-time Monitoring**: +3. **Real-Time Monitoring**: 
-   Feed live experiment results into dashboards or monitoring solutions (e.g., Grafana, Kibana).+   * Stream results into a dashboard for live experiment tracking. 
 + 
 +4. **Summarized Logging**: 
 +   * Automatically summarize metrics (e.g., show only the top 5 accuracies)
 + 
 +===== Best Practices ===== 
 + 
 +  * **Add Metadata**: Include timestamps and unique IDs for better traceability. 
 +  * **Backup Logs**: Regularly archive logs into remote storage to avoid data loss. 
 +  * **Validate Input**: Ensure your `config` and `results` follow a consistent structure.
  
 ===== Conclusion ===== ===== Conclusion =====
  
-The **Experiment Manager** simplifies tracking and managing experimental workflows by providing reusable way to log granular configurations and resultsIt is flexible enough to work for small-scale tasks and large-scale pipelinesensuring robustreproducible, and traceable operations.+The AI Experiment Manager provides a systematic approach to tracking experiments, ensuring reproducibility, scalability, and traceability throughout the entire experimentation **lifecycle**. By capturing configurations, inputs, execution contexts, and results in a structured and searchable format, it eliminates guesswork and supports rigorous comparison between experiment runs. Whether you're tuning **hyperparameters**, evaluating new algorithms, or testing system performance under different conditions, the Experiment Manager brings clarity and consistency to complex, iterative workflows
 + 
 +Its flexible, extensible design makes it an essential tool for anyone conducting experiments in machine learning, software development, or research pipelines. It seamlessly integrates with wide range of tools and frameworks, allowing users to log metrics, artifacts, datasets, and even environment snapshotsSupport for tagging, version control, and hierarchical experiment grouping makes organizing and scaling experiments intuitive, even across large teams or long-term projects. In additionbuilt-in visualizations and export features make it easy to interpret trendsshare findings, and report outcomes. With the Experiment Manager, experimentation becomes a first-class, collaborative process enabling faster innovation, reduced duplication of effort, and deeper insights into what drives results.
experiments.1745374554.txt.gz · Last modified: 2025/04/23 02:15 by eagleeyenebula