experiments
Differences
This shows you the differences between two versions of the page.
| Both sides previous revisionPrevious revisionNext revision | Previous revision | ||
| experiments [2025/04/23 02:14] – eagleeyenebula | experiments [2025/06/06 12:53] (current) – [Experiment Manager] eagleeyenebula | ||
|---|---|---|---|
| Line 1: | Line 1: | ||
| ====== Experiment Manager ====== | ====== Experiment Manager ====== | ||
| + | **[[https:// | ||
| + | The AI Experiment Manager system is responsible for managing and logging configurations, | ||
| - | The **Experiment Manager** is a flexible and lightweight system for managing experiments by logging configurations, | + | {{youtube> |
| + | ------------------------------------------------------------- | ||
| + | |||
| + | Built with flexibility and performance in mind, the Experiment Manager supports versioning of configurations, | ||
| ===== Overview ===== | ===== Overview ===== | ||
| - | The **Experiment | + | The Experiment Manager provides the following functionalities: |
| + | |||
| + | | ||
| + | Consistently logs experiment configurations and results for future | ||
| + | * **Scalable Storage**: | ||
| + | Experiment results are saved in JSON format, ensuring compatibility | ||
| + | * **Error-Resilient Design**: | ||
| + | Safeguards against runtime exceptions or storage errors. | ||
| + | * **Customizable Metadata**: | ||
| + | Supports the addition of metadata such as timestamps, unique IDs, and runtime environments. | ||
| ==== Key Features ==== | ==== Key Features ==== | ||
| - | * **Centralized Experiment Logging**: | + | * **Reproducible Research**: |
| - | | + | |
| - | * **Error-resilient Design**: | + | * **Batch Processing**: |
| - | | + | |
| - | * **Reproducibility**: | + | * **Custom Storage Paths**: |
| - | | + | |
| - | * **Extensibility**: | + | * **Extendable Architecture**: |
| - | Expandable to include additional experiment metadata (timestamps, | + | |
| - | * **Compatibility with Data Pipelines**: | + | |
| - | | + | |
| - | ===== Purpose and Goals ===== | + | ===== System Design |
| - | The primary objectives | + | The Experiment Manager consists |
| - | 1. **Repeatability**: | + | 1. Takes in **experiment |
| - | 2. **Automation**: | + | |
| - | 3. **Efficiency**: | + | |
| - | 4. **Data Transparency**: | + | |
| - | ===== System Design ===== | + | 2. Serializes the data into structured **JSON**. |
| - | The **Experiment Manager** relies on Python' | + | 3. Appends the **JSON** data to the specified file, defaulting to **experiment_logs.jso**. |
| - | ==== Core Class: | + | Code snippet for the **ExperimentManager** class: |
| - | <nowiki> | + | <code> |
| + | python | ||
| import logging | import logging | ||
| import json | import json | ||
| Line 42: | Line 52: | ||
| class ExperimentManager: | class ExperimentManager: | ||
| """ | """ | ||
| - | Manages experiments, | + | Manages experiments, |
| """ | """ | ||
| Line 48: | Line 58: | ||
| def log_experiment(config, | def log_experiment(config, | ||
| """ | """ | ||
| - | Logs configurations | + | Logs configuration |
| - | :param config: | + | |
| - | :param results: | + | :param config: |
| - | :param file_path: | + | :param results: |
| + | :param file_path: | ||
| """ | """ | ||
| logging.info(" | logging.info(" | ||
| try: | try: | ||
| + | # Serialize and append experiment data | ||
| experiment_data = {" | experiment_data = {" | ||
| with open(file_path, | with open(file_path, | ||
| - | json.dump(experiment_data, | + | json.dump(experiment_data, |
| log_file.write(" | log_file.write(" | ||
| - | logging.info(" | + | logging.info(" |
| except Exception as e: | except Exception as e: | ||
| - | logging.error(f" | + | logging.error(f" |
| - | </nowiki> | + | </code> |
| - | ==== Design Principles | + | ===== Usage Examples ===== |
| - | - **Simplicity**: | + | Below are several usage examples. Each demonstrates how to use the Experiment Manager system effectively. |
| - | - **Extensibility**: | + | |
| - | - **Error Resilience**: | + | |
| - | - **Integration-first Architecture**: | + | |
| - | ===== Implementation and Usage ===== | + | ==== Example 1: Logging a Simple Experiment |
| - | The following sections provide examples of how to effectively use the **Experiment Manager**. | + | <code> |
| - | + | python | |
| - | ==== Example 1: Basic Experiment Logging ==== | + | |
| - | + | ||
| - | Log an experiment' | + | |
| - | + | ||
| - | <nowiki> | + | |
| from experiment_manager import ExperimentManager | from experiment_manager import ExperimentManager | ||
| - | # Simple | + | # Define the experiment |
| - | experiment_config | + | config |
| - | "algorithm": " | + | "model": " |
| " | " | ||
| " | " | ||
| - | " | + | " |
| }, | }, | ||
| - | "data": "train_dataset.csv" | + | "dataset": "dataset_v1.csv" |
| } | } | ||
| - | experiment_results | + | results |
| - | " | + | " |
| - | " | + | " |
| } | } | ||
| # Log the experiment | # Log the experiment | ||
| - | ExperimentManager.log_experiment(experiment_config, experiment_results) | + | ExperimentManager.log_experiment(config, results) |
| print(" | print(" | ||
| - | </ | ||
| - | **Expected | + | </ |
| - | <nowiki> | + | |
| + | **Logged JSON Output | ||
| + | |||
| + | <code> | ||
| + | json | ||
| { | { | ||
| " | " | ||
| - | "algorithm": " | + | "model": " |
| " | " | ||
| " | " | ||
| " | " | ||
| }, | }, | ||
| - | "data": "train_dataset.csv" | + | "dataset": "dataset_v1.csv" |
| }, | }, | ||
| " | " | ||
| - | " | + | " |
| - | " | + | " |
| } | } | ||
| } | } | ||
| - | </ | ||
| - | ==== Example 2: Parameterized Log File Path ==== | + | </ |
| - | Customize the location and filename of the experiment log. | + | ==== Example 2: Saving Logs to Custom Files ==== |
| - | < | + | Specify a custom log file for storing experiment logs. |
| - | experiment_config = {" | + | |
| - | experiment_results = {" | + | |
| - | # Save to a custom log file path | + | < |
| - | ExperimentManager.log_experiment(experiment_config, experiment_results, file_path="outputs/ | + | python |
| - | </ | + | config = { |
| + | " | ||
| + | " | ||
| + | | ||
| + | } | ||
| - | ==== Example 3: Batch Experiment Logging ==== | + | results |
| + | " | ||
| + | } | ||
| - | Log multiple experiments in a single pipeline dynamically. | + | # Specify file path for logs |
| + | file_path = " | ||
| + | ExperimentManager.log_experiment(config, | ||
| - | <nowiki> | + | </code> |
| - | # Define multiple experiment setups | + | |
| - | experiments = [ | + | |
| - | { | + | |
| - | " | + | |
| - | " | + | |
| - | }, | + | |
| - | { | + | |
| - | " | + | |
| - | " | + | |
| - | } | + | |
| - | ] | + | |
| - | # Log each experiment | + | ==== Example 3: Adding Metadata to Experiments ==== |
| - | for experiment in experiments: | + | |
| - | ExperimentManager.log_experiment(experiment[" | + | |
| - | print(" | + | To improve traceability, |
| - | </ | + | |
| - | ==== Example 4: Adding Metadata (Timestamps and Experiment ID) ==== | + | <code> |
| - | + | python | |
| - | Automatically attach metadata such as unique experiment identifiers or timestamps for better traceability. | + | |
| - | + | ||
| - | <nowiki> | + | |
| import datetime | import datetime | ||
| import uuid | import uuid | ||
| from experiment_manager import ExperimentManager | from experiment_manager import ExperimentManager | ||
| - | # Experiment data | + | config |
| - | experiment_config | + | |
| - | experiment_results | + | " |
| + | } | ||
| + | |||
| + | results | ||
| - | # Add metadata | + | # Adding |
| - | metadata = { | + | config[" |
| " | " | ||
| " | " | ||
| } | } | ||
| - | # Merge metadata into experiment | + | ExperimentManager.log_experiment(config, results) |
| - | experiment_config[" | + | |
| - | # Log the experiment | + | </code> |
| - | ExperimentManager.log_experiment(experiment_config, | + | |
| - | </nowiki> | + | **Logged JSON Output with Metadata:** |
| - | **Enhanced Log Output**: | + | <code> |
| - | <nowiki> | + | json |
| { | { | ||
| " | " | ||
| - | "algorithm": " | + | "model": " |
| + | " | ||
| " | " | ||
| - | " | + | " |
| - | " | + | " |
| } | } | ||
| }, | }, | ||
| " | " | ||
| - | " | + | " |
| } | } | ||
| } | } | ||
| - | </ | ||
| - | ==== Example 5: Enhanced Error Handling ==== | + | </ |
| - | Demonstrate error handling when logging fails (e.g., file permission issues). | + | ==== Example 4: Batch Logging of Multiple Experiments ==== |
| - | < | + | Log multiple experiments in a batch: |
| - | try: | + | |
| - | ExperimentManager.log_experiment({" | + | |
| - | except Exception as ex: | + | |
| - | print(f" | + | |
| - | </ | + | |
| - | ===== Advanced Features ===== | + | < |
| + | python | ||
| + | batch = [ | ||
| + | { | ||
| + | " | ||
| + | " | ||
| + | }, | ||
| + | { | ||
| + | " | ||
| + | " | ||
| + | } | ||
| + | ] | ||
| - | 1. **Experiment Metadata**: | + | for experiment in batch: |
| - | Add metadata fields like `runtime environment`, | + | |
| - | + | ||
| - | 2. **Data Validation**: | + | |
| - | | + | |
| - | 3. **Database Integration**: | + | </ |
| - | | + | |
| - | 4. **Visualization**: | + | ==== Example 5: Error Handling ==== |
| - | | + | |
| - | 5. **Cloud Storage**: | + | To handle potential logging errors (e.g., invalid paths): |
| - | Log experiments directly to cloud platforms, such as S3 or Azure Blob Storage. | + | |
| - | ===== Use Cases ===== | + | < |
| + | python | ||
| + | try: | ||
| + | ExperimentManager.log_experiment({" | ||
| + | except Exception as e: | ||
| + | print(f" | ||
| - | 1. **Hyperparameter Tuning**: | + | </code> |
| - | | + | |
| - | 2. **Machine Learning Pipelines**: | + | |
| - | Track training results across multiple datasets and algorithms. | + | |
| - | 3. **Reproducible Analysis**: | + | |
| - | | + | |
| - | ===== Future Enhancements | + | ===== Advanced Functionality |
| - | 1. **Result Query Interface**: | + | The system can be extended to: |
| - | Create queries | + | |
| - | 2. **Automated Result Summaries**: | + | 1. **Cloud Storage**: |
| - | | + | * Modify **log_experiment** |
| - | 3. **Version Control for Logs**: | + | |
| - | Use tools like Git to version control the experiment | + | 2. **Database Integration**: |
| + | * Replace file storage with **SQL/ | ||
| + | |||
| + | 3. **Real-Time Monitoring**: | ||
| + | * Stream | ||
| + | |||
| + | 4. **Summarized Logging**: | ||
| + | * Automatically summarize metrics | ||
| + | |||
| + | ===== Best Practices ===== | ||
| + | |||
| + | | ||
| + | * **Backup | ||
| + | * **Validate Input**: Ensure your `config` and `results` follow a consistent structure. | ||
| ===== Conclusion ===== | ===== Conclusion ===== | ||
| - | The **Experiment Manager** | + | The AI Experiment Manager |
| + | |||
| + | Its flexible, extensible design makes it an essential | ||
experiments.1745374475.txt.gz · Last modified: 2025/04/23 02:14 by eagleeyenebula
