User Tools

Site Tools


experiments

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
experiments [2025/04/23 02:14] eagleeyenebulaexperiments [2025/06/06 12:53] (current) – [Experiment Manager] eagleeyenebula
Line 1: Line 1:
 ====== Experiment Manager ====== ====== Experiment Manager ======
 +**[[https://autobotsolutions.com/god/templates/index.1.html|More Developers Docs]]**:
 +The AI Experiment Manager system is responsible for managing and logging configurations, results, and metadata for experiments, serving as the central hub for tracking the lifecycle of experimental workflows. By capturing every variable, parameter, and outcome, it ensures that each experiment is fully traceable and reproducible critical qualities for scientific rigor, iterative development, and compliance in regulated environments. Whether running isolated tests or large-scale batch experiments, the system enables researchers and developers to track progress, compare outcomes, and make informed decisions based on structured, historical data.
  
-The **Experiment Manager** is a flexible and lightweight system for managing experiments by logging configurations, results, and metadata. It ensures repeatability and traceability of tests for machine learning, statistical studies, or any scientific research requiring experiment tracking.+{{youtube>ecLP_X2D16M?large}}
  
 +-------------------------------------------------------------
 +
 +Built with flexibility and performance in mind, the Experiment Manager supports versioning of configurations, tagging of experimental runs, and integration with external tools such as model registries, monitoring platforms, and data visualization dashboards. It can accommodate a variety of experiment types from hyperparameter tuning in machine learning models to performance benchmarking in software systems. Through its modular architecture, users can define custom logging behavior, attach contextual metadata, and link results with code snapshots or datasets. This not only promotes reproducibility but also accelerates collaboration and knowledge sharing across teams. With the Experiment Manager, experimentation becomes a disciplined, transparent, and scalable process aligned with best practices in modern research and development workflows.
 ===== Overview ===== ===== Overview =====
  
-The **Experiment Manager** provides a consistent method for documenting the details of each experiment — ensuring researchers, developers, and engineers can validate results, test different configurationsand conduct reproducibility analysis. Data is stored in JSON format to allow seamless integration with analytics and visualization tools.+The Experiment Manager provides the following functionalities: 
 + 
 +  * **Centralized Experiment Logging**
 +    Consistently logs experiment configurations and results for future analysis. 
 +  * **Scalable Storage**: 
 +    Experiment results are saved in JSON format, ensuring compatibility with analytics tools
 +  * **Error-Resilient Design**: 
 +    Safeguards against runtime exceptions or storage errors. 
 +  * **Customizable Metadata**: 
 +    Supports the addition of metadata such as timestamps, unique IDs, and runtime environments.
  
 ==== Key Features ==== ==== Key Features ====
  
-  * **Centralized Experiment Logging**: +  * **Reproducible Research**:  
-    Record configurations, results, and metadata in an easily accessible format+    Logs every detail necessary to reproduce results. 
-  * **Error-resilient Design**: +  * **Batch Processing**:  
-    Automatically handles logging exceptions to prevent workflow interruptions+    Allows multiple experiments to be tracked simultaneously
-  * **Reproducibility**: +  * **Custom Storage Paths**:  
-    Supports saving all configurations required to reproduce experimental results. +    Configuration to save logs in default or custom directories
-  * **Extensibility**: +  * **Extendable Architecture**: 
-    Expandable to include additional experiment metadata (timestamps, IDs, etc.) or different storage methods+    Integrates easily with cloud solutions or databases for advanced storage and analysis.
-  * **Compatibility with Data Pipelines**: +
-    Simple integration with ML pipelines for hyperparameter optimization, benchmarking, etc.+
  
-===== Purpose and Goals =====+===== System Design =====
  
-The primary objectives of the **Experiment Manager** system include:+The Experiment Manager consists of a single lightweight class **ExperimentManager**. It features a static method, `log_experiment`, which performs the following:
  
-1. **Repeatability**: Ensure experiments can be reproduced using logged configurations+1. Takes in **experiment configurations** and **results** in dictionary format.
-2. **Automation**: Simplify the process of experiment setup, logging, and data storage. +
-3. **Efficiency**: Minimize the time spent recording and managing experiment results+
-4. **Data Transparency**: Provide a clear, comprehensive log of experimental results for interpreting experiments or debugging.+
  
-===== System Design =====+2. Serializes the data into structured **JSON**.
  
-The **Experiment Manager** relies on Python's `json` and `logging` modules for efficient, structured data logging and monitoring. Its modular class design enables straightforward integration and custom extensionsmaking it robust for various use cases.+3. Appends the **JSON** data to the specified filedefaulting to **experiment_logs.jso**.
  
-==== Core Class: ExperimentManager ====+Code snippet for the **ExperimentManager** class:
  
-<nowiki>+<code> 
 +python
 import logging import logging
 import json import json
Line 42: Line 52:
 class ExperimentManager: class ExperimentManager:
     """     """
-    Manages experiments, from setup to result tracking.+    Manages experiments, from setup to result logging.
     """     """
  
Line 48: Line 58:
     def log_experiment(config, results, file_path="experiment_logs.json"):     def log_experiment(config, results, file_path="experiment_logs.json"):
         """         """
-        Logs configurations and results of an experiment. +        Logs configuration and results of an experiment. 
-        :param config: Configuration of the experiment + 
-        :param results: Results obtained from the experiment +        :param config: Dictionary containing experimental configurations. 
-        :param file_path: Path to save the experiment log+        :param results: Dictionary containing experimental results. 
 +        :param file_path: File path for saving the experiment log.
         """         """
         logging.info("Logging experiment data...")         logging.info("Logging experiment data...")
         try:         try:
 +            # Serialize and append experiment data
             experiment_data = {"config": config, "results": results}             experiment_data = {"config": config, "results": results}
             with open(file_path, "a") as log_file:             with open(file_path, "a") as log_file:
-                json.dump(experiment_data, log_file)+                json.dump(experiment_data, log_file, indent=4)
                 log_file.write("\n")                 log_file.write("\n")
-            logging.info("Experiment data logged successfully.")+            logging.info("Experiment logged successfully.")
         except Exception as e:         except Exception as e:
-            logging.error(f"Failed to log experiment data: {e}"+            logging.error(f"Error logging experiment: {e}"
-</nowiki>+</code>
  
-==== Design Principles ====+===== Usage Examples =====
  
-- **Simplicity**: Focused on minimal yet high-impact functionality. +Below are several usage examplesEach demonstrates how to use the Experiment Manager system effectively.
-- **Extensibility**: Easy to extend for more sophisticated logging requirements. +
-- **Error Resilience**: Errors in logging do not disrupt the main program’s flow. +
-- **Integration-first Architecture**: Ready to work with typical machine learning or research workflows.+
  
-===== Implementation and Usage =====+==== Example 1: Logging a Simple Experiment ====
  
-The following sections provide examples of how to effectively use the **Experiment Manager**. +<code> 
- +python
-==== Example 1: Basic Experiment Logging ==== +
- +
-Log an experiment's configuration and results into a default JSON file. +
- +
-<nowiki>+
 from experiment_manager import ExperimentManager from experiment_manager import ExperimentManager
  
-Simple experiment setup +Define the experiment configuration and results 
-experiment_config = { +config = { 
-    "algorithm": "RandomForest",+    "model": "RandomForest",
     "hyperparameters": {     "hyperparameters": {
         "n_estimators": 100,         "n_estimators": 100,
-        "max_depth": 10+        "max_depth": 10,
     },     },
-    "data": "train_dataset.csv"+    "dataset": "dataset_v1.csv"
 } }
  
-experiment_results = { +results = { 
-    "accuracy": 0.89+    "accuracy": 0.85
-    "f1_score": 0.87+    "f1_score": 0.88
 } }
  
 # Log the experiment # Log the experiment
-ExperimentManager.log_experiment(experiment_configexperiment_results)+ExperimentManager.log_experiment(configresults)
 print("Experiment logged successfully!") print("Experiment logged successfully!")
-</nowiki> 
  
-**Expected Output in `experiment_logs.json`**: +</code> 
-<nowiki>+ 
 +**Logged JSON Output (in `experiment_logs.json`):** 
 + 
 +<code> 
 +json
 { {
     "config": {     "config": {
-        "algorithm": "RandomForest",+        "model": "RandomForest",
         "hyperparameters": {         "hyperparameters": {
             "n_estimators": 100,             "n_estimators": 100,
             "max_depth": 10             "max_depth": 10
         },         },
-        "data": "train_dataset.csv"+        "dataset": "dataset_v1.csv"
     },     },
     "results": {     "results": {
-        "accuracy": 0.89+        "accuracy": 0.85
-        "f1_score": 0.87+        "f1_score": 0.88
     }     }
 } }
-</nowiki> 
  
-==== Example 2: Parameterized Log File Path ====+</code>
  
-Customize the location and filename of the experiment log.+==== Example 2: Saving Logs to Custom Files ====
  
-<nowiki> +Specify a custom log file for storing experiment logs.
-experiment_config = {"algorithm": "SVM", "parameters": {"C": 1.0, "kernel": "linear"}} +
-experiment_results = {"accuracy": 0.93}+
  
-# Save to a custom log file path +<code> 
-ExperimentManager.log_experiment(experiment_configexperiment_resultsfile_path="outputs/experiment_logs_custom.json") +python 
-</nowiki>+config = { 
 +    "model": "SVM", 
 +    "kernel": "linear", 
 +    "C": 1.0 
 +}
  
-==== Example 3Batch Experiment Logging ====+results 
 +    "accuracy"0.89 
 +}
  
-Log multiple experiments in a single pipeline dynamically.+# Specify file path for logs 
 +file_path = "custom_logs/svm_experiment.json" 
 +ExperimentManager.log_experiment(config, results, file_path=file_path)
  
-<nowiki> +</code>
-# Define multiple experiment setups +
-experiments = [ +
-    { +
-        "config": {"algorithm": "KNN", "parameters": {"k": 3}}, +
-        "results": {"accuracy": 0.82} +
-    }, +
-    { +
-        "config": {"algorithm": "GradientBoosting", "parameters": {"learning_rate": 0.1}}, +
-        "results": {"accuracy": 0.91} +
-    } +
-]+
  
-# Log each experiment +==== Example 3Adding Metadata to Experiments ====
-for experiment in experiments: +
-    ExperimentManager.log_experiment(experiment["config"], experiment["results"])+
  
-print("All experiments logged successfully.") +To improve traceability, you can add metadata like timestamps or unique IDs.
-</nowiki>+
  
-==== Example 4: Adding Metadata (Timestamps and Experiment ID) ==== +<code> 
- +python
-Automatically attach metadata such as unique experiment identifiers or timestamps for better traceability. +
- +
-<nowiki>+
 import datetime import datetime
 import uuid import uuid
 from experiment_manager import ExperimentManager from experiment_manager import ExperimentManager
  
-# Experiment data +config = { 
-experiment_config = {"algorithm": "LogisticRegression"+    "model": "LogisticRegression"
-experiment_results = {"accuracy": 0.84}+    "parameters": {
 +
 + 
 +results = {"accuracy": 0.80}
  
-Add metadata +Adding metadata 
-metadata = {+config["metadata"= {
     "timestamp": datetime.datetime.now().isoformat(),     "timestamp": datetime.datetime.now().isoformat(),
     "experiment_id": str(uuid.uuid4())     "experiment_id": str(uuid.uuid4())
 } }
  
-# Merge metadata into experiment config +ExperimentManager.log_experiment(config, results)
-experiment_config["metadata"] = metadata+
  
-# Log the experiment +</code> 
-ExperimentManager.log_experiment(experiment_config, experiment_results) + 
-</nowiki>+**Logged JSON Output with Metadata:**
  
-**Enhanced Log Output**: +<code> 
-<nowiki>+json
 { {
     "config": {     "config": {
-        "algorithm": "LogisticRegression",+        "model": "LogisticRegression"
 +        "parameters": {},
         "metadata": {         "metadata": {
-            "timestamp": "2023-10-10T15:30:00.123456", +            "timestamp": "2023-10-12T10:30:45.678901", 
-            "experiment_id": "a1b2c3d4-e5f6-7890-1234-5abcdef67890"+            "experiment_id": "f78b2782-2342-433c-b4da-9a5e5c6f023f"
         }         }
     },     },
     "results": {     "results": {
-        "accuracy": 0.84+        "accuracy": 0.80
     }     }
 } }
-</nowiki> 
  
-==== Example 5: Enhanced Error Handling ====+</code>
  
-Demonstrate error handling when logging fails (e.g., file permission issues).+==== Example 4: Batch Logging of Multiple Experiments ====
  
-<nowiki> +Log multiple experiments in a batch:
-try: +
-    ExperimentManager.log_experiment({"algorithm": "Invalid"}, {"result": "N/A"}, file_path="/restricted/experiment_logs.json"+
-except Exception as ex: +
-    print(f"Logging failed: {ex}"+
-</nowiki>+
  
-===== Advanced Features =====+<code> 
 +python 
 +batch 
 +    { 
 +        "config": {"model": "DecisionTree", "max_depth": 8}, 
 +        "results": {"accuracy": 0.78} 
 +    }, 
 +    { 
 +        "config": {"model": "KNN", "neighbors": 5}, 
 +        "results": {"accuracy": 0.81} 
 +    } 
 +]
  
-1. **Experiment Metadata**+for experiment in batch
-   Add metadata fields like `runtime environment`, `initial conditions`, and `dependencies`. +    ExperimentManager.log_experiment(experiment["config"]experiment["results"])
-    +
-2. **Data Validation**: +
-   Automatically validate experiment configurations before logging (e.g.ensure no missing fields).+
  
-3. **Database Integration**: +</code>
-   Replace JSON file storage with a database (e.g., SQLite, PostgreSQL) for scalable tracking of thousands of experiments.+
  
-4. **Visualization**: +==== Example 5Error Handling ====
-   Generate real-time plots from logged results (e.g., accuracy vs. configurations).+
  
-5**Cloud Storage**: +To handle potential logging errors (e.g., invalid paths):
-   Log experiments directly to cloud platforms, such as S3 or Azure Blob Storage.+
  
-===== Use Cases =====+<code> 
 +python 
 +try: 
 +    ExperimentManager.log_experiment({"model": "XGBoost"}, {"accuracy": 0.94}, file_path="/invalid/path.json"
 +except Exception as e: 
 +    print(f"Logging failed: {e}")
  
-1. **Hyperparameter Tuning**: +</code>
-   Record results of various combinations of hyperparameters. +
-2. **Machine Learning Pipelines**: +
-   Track training results across multiple datasets and algorithms. +
-3. **Reproducible Analysis**: +
-   Create complete logs for experiments, enabling reproducibility in AI/ML research.+
  
-===== Future Enhancements =====+===== Advanced Functionality =====
  
-1. **Result Query Interface**: +The system can be extended to: 
-   Create queries to extract specific results (e.g., find the top 5 accuracy scores). + 
-2. **Automated Result Summaries**: +1. **Cloud Storage**: 
-   Automatically produce comprehensive summaries of logged experiments+   * Modify **log_experiment** to send logs to **Amazon S3**, **Google Cloud Storage**, or **Azure Blob**. 
-3. **Version Control for Logs**: +    
-   Use tools like Git to version control the experiment logs for provenance.+2. **Database Integration**: 
 +   * Replace file storage with **SQL/NoSQL** databases for scalable operations. 
 + 
 +3. **Real-Time Monitoring**: 
 +   * Stream results into a dashboard for live experiment tracking. 
 + 
 +4. **Summarized Logging**: 
 +   * Automatically summarize metrics (e.g., show only the top 5 accuracies). 
 + 
 +===== Best Practices ===== 
 + 
 +  * **Add Metadata**: Include timestamps and unique IDs for better traceability
 +  * **Backup Logs**: Regularly archive logs into remote storage to avoid data loss. 
 +  * **Validate Input**: Ensure your `config` and `results` follow a consistent structure.
  
 ===== Conclusion ===== ===== Conclusion =====
  
-The **Experiment Manager** is critical tool designed for anyone managing experiments in research, development, or production workflowsIts flexibilitysimplicity, and extensibility make it an indispensable asset for reproducibility and analysis.+The AI Experiment Manager provides a systematic approach to tracking experiments, ensuring reproducibility, scalability, and traceability throughout the entire experimentation **lifecycle**. By capturing configurations, inputs, execution contexts, and results in structured and searchable format, it eliminates guesswork and supports rigorous comparison between experiment runs. Whether you're tuning **hyperparameters**, evaluating new algorithms, or testing system performance under different conditions, the Experiment Manager brings clarity and consistency to complex, iterative workflows. 
 + 
 +Its flexible, extensible design makes it an essential tool for anyone conducting experiments in machine learningsoftware development, or research pipelinesIt seamlessly integrates with a wide range of tools and frameworksallowing users to log metricsartifacts, datasets, and even environment snapshots. Support for tagging, version control, and hierarchical experiment grouping makes organizing and scaling experiments intuitive, even across large teams or long-term projects. In addition, built-in visualizations and export features make it easy to interpret trends, share findings, and report outcomes. With the Experiment Manager, experimentation becomes a first-class, collaborative process enabling faster innovation, reduced duplication of effort, and deeper insights into what drives results.
experiments.1745374475.txt.gz · Last modified: 2025/04/23 02:14 by eagleeyenebula