User Tools

Site Tools


error_handler

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
error_handler [2025/04/25 23:40] – external edit 127.0.0.1error_handler [2025/06/06 02:34] (current) – [Error Handler] eagleeyenebula
Line 1: Line 1:
 ====== Error Handler ====== ====== Error Handler ======
-**[[https://autobotsolutions.com/god/templates/index.1.html|More Developers Docs]]**: +**[[https://autobotsolutions.com/god/templates/index.1.html|More Developers Docs]]**: 
-The **Error Handler** is a centralized system designed for logging, managing, and retrying operations in the event of errors or exceptions. It simplifies the process of error handling across workflows and ensures system stability by offering structured retry mechanisms and robust logging.+The **AI Error Handler** is a centralized system designed for logging, managing, and retrying operations in the event of errors or exceptions. It simplifies the process of error handling across workflows by abstracting complex recovery logic into a unified interface. Whether the failure stems from network interruptions, API timeouts, invalid inputs, or unexpected system states, the Error Handler ensures consistent behavior and controlled recovery, minimizing the impact on upstream and downstream processes. With structured retry mechanisms, fallback options, and detailed logging, it provides the resilience needed to maintain operational continuity in modern, distributed environments.
  
 +{{youtube>2tDXqkK6ML4?large}}
 +
 +-------------------------------------------------------------
 +
 +Built with modularity and scalability in mind, the Error Handler integrates seamlessly into event-driven systems, background jobs, API layers, and data processing pipelines. It supports customizable retry policies such as exponential backoff, fixed delays, and circuit breakers, allowing fine-tuned control over recovery strategies. Additionally, its logging subsystem captures detailed metadata about each failure, including timestamps, stack traces, affected components, and retry outcomes, which can be routed to observability tools for real-time monitoring and post-mortem analysis. By isolating and managing failure points in a predictable manner, the Error Handler not only improves fault tolerance but also accelerates debugging and enhances system transparency for developers and operators alike.
 ===== Overview ===== ===== Overview =====
  
Line 21: Line 26:
  
 1. **Unified Error Management**: 1. **Unified Error Management**:
-   Centralize handling of exceptions across multiple modules or workflows.+   Centralize handling of exceptions across multiple modules or workflows.
 2. **System Stability**: 2. **System Stability**:
-   Automatically recover from transient or known errors without manual intervention.+   Automatically recover from transient or known errors without manual intervention.
 3. **Enhanced Debugging**: 3. **Enhanced Debugging**:
-   Capture detailed logs for all error events, facilitating quick resolutions.+   Capture detailed logs for all error events, facilitating quick resolutions.
 4. **Developer Productivity**: 4. **Developer Productivity**:
-   Reduce boilerplate error-handling code by reusing a centralized error management system.+   Reduce boilerplate error-handling code by reusing a centralized error management system.
  
 ===== System Design ===== ===== System Design =====
Line 35: Line 40:
 ==== Core Class: ErrorHandler ==== ==== Core Class: ErrorHandler ====
  
-```python+<code> 
 +python
 import logging import logging
  
Line 61: Line 67:
         else:         else:
             logging.error("No retries left or retry function not specified.")             logging.error("No retries left or retry function not specified.")
-```+</code>
  
 ==== Design Principles ==== ==== Design Principles ====
Line 80: Line 86:
 Log an error without retrying any function. Log an error without retrying any function.
  
-```python+<code> 
 +python
 import logging import logging
 from error_handler import ErrorHandler from error_handler import ErrorHandler
Line 92: Line 99:
 except ValueError as e: except ValueError as e:
     ErrorHandler.handle_error(e)     ErrorHandler.handle_error(e)
-``` +</code>
 **Expected Logging Output**: **Expected Logging Output**:
-```+<code>
 ERROR - Error occurred: Sample error occurred. ERROR - No retries left or retry function not specified. ERROR - Error occurred: Sample error occurred. ERROR - No retries left or retry function not specified.
-``` +</code>
  
 ==== Example 2: Retrying a Failed Function ==== ==== Example 2: Retrying a Failed Function ====
Line 103: Line 109:
 Retry a function that might fail due to transient errors. Retry a function that might fail due to transient errors.
  
-```python+<code> 
 +python
 import random import random
 from error_handler import ErrorHandler from error_handler import ErrorHandler
Line 121: Line 128:
 except Exception as e: except Exception as e:
     print("Unhandled error after retries:", e)     print("Unhandled error after retries:", e)
-```+</code>
  
 **Behavior**: **Behavior**:
-The system will retry up to 3 times for `unreliable_functionif it fails. +   The system will retry up to 3 times for **unreliable_function** if it fails. 
-Logs all retry attempts and the outcome.+   * Logs all retry attempts and the outcome.
  
 ==== Example 3: Logging Integration ==== ==== Example 3: Logging Integration ====
Line 131: Line 138:
 Enable detailed logging to track each retry attempt and its results. Enable detailed logging to track each retry attempt and its results.
  
-```python+<code>python
 import logging import logging
 from error_handler import ErrorHandler from error_handler import ErrorHandler
Line 147: Line 154:
 # Attempt the function with retries # Attempt the function with retries
 ErrorHandler.handle_error(Exception("Initial error"), retry_function=always_fails, retries=2) ErrorHandler.handle_error(Exception("Initial error"), retry_function=always_fails, retries=2)
-``` +</code>
 **Log File Sample (error_handler.log)**: **Log File Sample (error_handler.log)**:
-```+<code>
 2023-10-10 15:05:32 - ERROR - Error occurred: Initial error 2023-10-10 15:05:32 - INFO - Retrying function 'always_fails'... Remaining retries: 2 2023-10-10 15:05:32 - ERROR - Error occurred: This function always fails. 2023-10-10 15:05:32 - INFO - Retrying function 'always_fails'... Remaining retries: 1 2023-10-10 15:05:32 - ERROR - Error occurred: This function always fails. 2023-10-10 15:05:32 - ERROR - No retries left or retry function not specified. 2023-10-10 15:05:32 - ERROR - Error occurred: Initial error 2023-10-10 15:05:32 - INFO - Retrying function 'always_fails'... Remaining retries: 2 2023-10-10 15:05:32 - ERROR - Error occurred: This function always fails. 2023-10-10 15:05:32 - INFO - Retrying function 'always_fails'... Remaining retries: 1 2023-10-10 15:05:32 - ERROR - Error occurred: This function always fails. 2023-10-10 15:05:32 - ERROR - No retries left or retry function not specified.
-``` +</code>
  
 ==== Example 4: Extending the Retry Mechanism ==== ==== Example 4: Extending the Retry Mechanism ====
Line 158: Line 164:
 Introduce an exponential backoff for retries by extending the `ErrorHandler` class. Introduce an exponential backoff for retries by extending the `ErrorHandler` class.
  
-```python+<code> 
 +python
 import time import time
 import logging import logging
Line 187: Line 194:
         else:         else:
             logging.error("No retries left or retry function not specified.")             logging.error("No retries left or retry function not specified.")
-```+</code>
  
 **Usage**: **Usage**:
-```python+<code> 
 +python
 def flaky_function(): def flaky_function():
     raise Exception("Simulated failure.")     raise Exception("Simulated failure.")
Line 200: Line 208:
     delay=1     delay=1
 ) )
-```+</code>
  
 **Behavior**: **Behavior**:
 +<code>
 - Retries `flaky_function` up to 3 times with exponentially increasing delays (1s -> 2s -> 4s). - Retries `flaky_function` up to 3 times with exponentially increasing delays (1s -> 2s -> 4s).
 +</code>
 ===== Advanced Features ===== ===== Advanced Features =====
  
 1. **Custom Retry Policies**: 1. **Custom Retry Policies**:
-   Implement policies like linear backoff, jitter, or retry caps based on error classifications.+   Implement policies like linear backoff, jitter, or retry caps based on error classifications.
 2. **External Monitoring Integration**: 2. **External Monitoring Integration**:
-   Integrate with tools like Sentry or Datadog to push error logs to centralized monitoring dashboards.+   Integrate with tools like Sentry or Datadog to push error logs to centralized monitoring dashboards.
 3. **Retry Event Hooks**: 3. **Retry Event Hooks**:
-   Add event hooks for custom actions before each retry, such as notifying a monitoring system.+   Add event hooks for custom actions before each retry, such as notifying a monitoring system.
 4. **Contextual Error Data**: 4. **Contextual Error Data**:
-   Enhance logs by including contextual metadata, like user requests, file paths, or input parameters.+   Enhance logs by including contextual metadata, like user requests, file paths, or input parameters.
  
 ===== Use Cases ===== ===== Use Cases =====
Line 221: Line 230:
  
 1. **Resilient Pipelines**: 1. **Resilient Pipelines**:
-   Automatically retry failed steps in ETL or AI/ML pipelines.+   Automatically retry failed steps in ETL or AI/ML pipelines.
 2. **API Integration**: 2. **API Integration**:
-   Retry API calls that fail due to transient network issues or rate-limiting.+   Retry API calls that fail due to transient network issues or rate-limiting.
 3. **Distributed Systems**: 3. **Distributed Systems**:
-   Manage task retries in distributed environments where node failures are possible.+   Manage task retries in distributed environments where node failures are possible.
 4. **Database Operations**: 4. **Database Operations**:
-   Retry failed transactions or queries in database workflows experiencing intermittent issues.+   Retry failed transactions or queries in database workflows experiencing intermittent issues.
  
 ===== Future Enhancements ===== ===== Future Enhancements =====
  
 1. **Error Classification**: 1. **Error Classification**:
-   Automatically classify errors and apply different retry strategies for each type.+   Automatically classify errors and apply different retry strategies for each type.
 2. **Parallelized Retry**: 2. **Parallelized Retry**:
-   Implement concurrent retries for independent operations.+   Implement concurrent retries for independent operations.
 3. **Persistent State**: 3. **Persistent State**:
-   Store retry states in a database or cache to continue retries after a system restart.+   Store retry states in a database or cache to continue retries after a system restart.
 4. **Custom Notification System**: 4. **Custom Notification System**:
-   Notify developers or DevOps teams via email, Slack, or other channels when retries fail.+   Notify developers or DevOps teams via email, Slack, or other channels when retries fail.
  
 ===== Conclusion ===== ===== Conclusion =====
  
-The **Error Handler** simplifies error management and enhances the reliability of workflows by automating error reporting and retry mechanisms. Its extensible structure ensures adaptability to evolving requirements, making it suitable for a wide range of use cases.+The **AI Error Handler** simplifies error management and enhances the reliability of workflows by automating error reporting, categorization, and retry mechanisms. By centralizing the handling of exceptions, timeouts, and unexpected system behaviors, it ensures that failures are captured and managed in a consistent, predictable manner. This reduces the burden on individual components to implement their own error logic, resulting in cleaner, more maintainable code. Whether in batch jobs, real-time services, or complex multi-step pipelines, the Error Handler acts as a safeguard that preserves workflow integrity and uptime. 
 + 
 +Its extensible structure allows developers to define custom error types, implement targeted response strategies, and plug in external monitoring or alerting systems with ease. The modular design supports dynamic configuration of retry policies, fallback routines, and escalation paths, making it highly adaptable to both simple applications and enterprise-grade systems. From logging anomalies for later inspection to triggering automated recovery flows, the Error Handler plays critical role in maintaining operational resilience. As systems evolve and new failure modes emerge, the Error Handler can grow alongside them—ensuring that error resolution remains proactive, consistent, and scalable across the entire software lifecycle.
error_handler.1745624454.txt.gz · Last modified: 2025/04/25 23:40 by 127.0.0.1