User Tools

Site Tools


ai_spark_data_processor

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
ai_spark_data_processor [2025/05/29 22:12] – [Example 3: Writing Transformed Data to Storage] eagleeyenebulaai_spark_data_processor [2025/06/04 13:27] (current) – [AI Spark Data Processor] eagleeyenebula
Line 2: Line 2:
 **[[https://autobotsolutions.com/god/templates/index.1.html|More Developers Docs]]**: **[[https://autobotsolutions.com/god/templates/index.1.html|More Developers Docs]]**:
 The **AI Spark Data Processor** is a high-performance framework for large-scale data processing using Apache Spark. By leveraging the parallel processing capabilities of Spark, this module is designed to efficiently handle massive datasets, enabling real-time transformations, filtering, and distributed computation. The **AI Spark Data Processor** is a high-performance framework for large-scale data processing using Apache Spark. By leveraging the parallel processing capabilities of Spark, this module is designed to efficiently handle massive datasets, enabling real-time transformations, filtering, and distributed computation.
 +
 +{{youtube>4aun1JsebTs?large}}
 +
 +-------------------------------------------------------------
  
 This documentation provides a comprehensive guide to implementing, customizing, and extending the functionality of the AI Spark Data Processor, complete with advanced examples and use cases. This documentation provides a comprehensive guide to implementing, customizing, and extending the functionality of the AI Spark Data Processor, complete with advanced examples and use cases.
Line 122: Line 126:
 Spark SQL provides a powerful interface for querying DataFrames using SQL commands. Spark SQL provides a powerful interface for querying DataFrames using SQL commands.
  
-```python+<code> 
 +python
 # Register the DataFrame as a temporary SQL view # Register the DataFrame as a temporary SQL view
 df.createOrReplaceTempView("data_view") df.createOrReplaceTempView("data_view")
Line 132: Line 137:
 # Show SQL query results # Show SQL query results
 aggregated_df.show() aggregated_df.show()
-```+</code>
  
 ==== Example 5: Dynamic Parallelism with Partitioning ==== ==== Example 5: Dynamic Parallelism with Partitioning ====
Line 138: Line 143:
 Partitioning datasets provides faster processing by taking advantage of Spark's distributed nature. Partitioning datasets provides faster processing by taking advantage of Spark's distributed nature.
  
-```python+<code> 
 +python
 # Repartition the data for better parallelism # Repartition the data for better parallelism
 partitioned_df = df.repartition(10) partitioned_df = df.repartition(10)
Line 150: Line 156:
 # Show partitioned and filtered results # Show partitioned and filtered results
 filtered_partitioned_df.show() filtered_partitioned_df.show()
-```+</code>
  
 ===== Advanced Features ===== ===== Advanced Features =====
Line 157: Line 163:
    Extend the `initialize_spark` function to include custom Spark configurations, such as memory optimization and executor tuning.    Extend the `initialize_spark` function to include custom Spark configurations, such as memory optimization and executor tuning.
  
-```python+<code> 
 +python
 def initialize_spark_with_config(app_name="AI_Pipeline"): def initialize_spark_with_config(app_name="AI_Pipeline"):
     """     """
Line 169: Line 176:
              .getOrCreate())              .getOrCreate())
     return spark     return spark
-```+</code>
  
 2. **Real-Time Streaming with Structured Streaming**: 2. **Real-Time Streaming with Structured Streaming**:
    Use Spark’s structured streaming APIs to process real-time, continuous data streams.    Use Spark’s structured streaming APIs to process real-time, continuous data streams.
  
-```python+<code> 
 +python
 # Example: Processing real-time data from socket streaming # Example: Processing real-time data from socket streaming
 streaming_df = spark.readStream.format("socket").option("host", "localhost").option("port", 9999).load() streaming_df = spark.readStream.format("socket").option("host", "localhost").option("port", 9999).load()
Line 187: Line 195:
          .start())          .start())
 query.awaitTermination() query.awaitTermination()
-```+</code>
  
 3. **Integration with ML Pipelines**: 3. **Integration with ML Pipelines**:
-   Combine the **AI Spark Data Processor** with machine learning pipelines using Spark MLlib.+     Combine the **AI Spark Data Processor** with machine learning pipelines using Spark MLlib.
  
-```python+<code> 
 +python
 from pyspark.ml.feature import VectorAssembler from pyspark.ml.feature import VectorAssembler
 from pyspark.ml.regression import LinearRegression from pyspark.ml.regression import LinearRegression
Line 207: Line 216:
 print(f"Coefficients: {model.coefficients}") print(f"Coefficients: {model.coefficients}")
 print(f"Intercept: {model.intercept}") print(f"Intercept: {model.intercept}")
-```+</code>
  
 4. **Handling Unstructured Data**: 4. **Handling Unstructured Data**:
-   Process semi-structured or unstructured data using Spark.+     Process semi-structured or unstructured data using Spark.
  
-```python+<code> 
 +python
 # Load JSON data # Load JSON data
 json_df = spark.read.json("unstructured_data.json") json_df = spark.read.json("unstructured_data.json")
Line 219: Line 229:
 flattened_df = json_df.select("field1", "nested.field2", "nested.field3") flattened_df = json_df.select("field1", "nested.field2", "nested.field3")
 flattened_df.show() flattened_df.show()
-```+</code>
  
 ===== Use Cases ===== ===== Use Cases =====
Line 226: Line 236:
  
 1. **Big Data Analytics**: 1. **Big Data Analytics**:
-   Analyze massive datasets for insights, trends, and patterns.+   Analyze massive datasets for insights, trends, and patterns.
  
 2. **ETL Pipelines**: 2. **ETL Pipelines**:
-   Automate extraction, transformation, and loading workflows with scalable Spark-based pipelines.+   Automate extraction, transformation, and loading workflows with scalable Spark-based pipelines.
  
 3. **Machine Learning**: 3. **Machine Learning**:
-   Preprocess large datasets and run distributed ML models using Spark MLlib.+   Preprocess large datasets and run distributed ML models using Spark MLlib.
  
 4. **Real-time Data Processing**: 4. **Real-time Data Processing**:
-   Process streaming data from IoT devices, web applications, or logs in real time.+   Process streaming data from IoT devices, web applications, or logs in real time.
  
 5. **Business Intelligence**: 5. **Business Intelligence**:
-   Process financial, retail, or customer datasets for actionable insights.+   Process financial, retail, or customer datasets for actionable insights.
  
 ===== Future Enhancements ===== ===== Future Enhancements =====
ai_spark_data_processor.1748556735.txt.gz · Last modified: 2025/05/29 22:12 by eagleeyenebula