User Tools

Site Tools


ai_reinforcement_learning

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
ai_reinforcement_learning [2025/05/29 18:47] – [Conclusion] eagleeyenebulaai_reinforcement_learning [2025/05/29 18:49] (current) – [Future Enhancements] eagleeyenebula
Line 190: Line 190:
  
 1. **Dynamic Training Integration**: 1. **Dynamic Training Integration**:
-     * Use dynamic algorithms (e.g., DQN, PPO, A3C) with custom logic through modular training loops.+     * Use dynamic algorithms (e.g., **DQN****PPO****A3C**) with custom logic through modular training loops.
  
 2. **Custom Metrics API**: 2. **Custom Metrics API**:
-     * Extend the `evaluate_agent()to include custom performance indicators such as time steps, penalties, average Q-values, and success rates.+     * Extend the **evaluate_agent()** to include custom performance indicators such as time steps, penalties, average Q-values, and success rates.
  
 3. **Environment Swapping**: 3. **Environment Swapping**:
-     * Seamlessly swap between default environments (e.g., CartPole, LunarLander) and custom-designed RL environments.+     * Seamlessly swap between default environments (e.g., **CartPole****LunarLander**) and custom-designed **RL environments**.
  
 ===== Use Cases ===== ===== Use Cases =====
Line 222: Line 222:
  
   * **Policy-Gradient Support**:   * **Policy-Gradient Support**:
-    Add native support for policy-gradient algorithms like PPO and A3C.+    Add native support for policy-gradient algorithms like **PPO** and **A3C**.
  
   * **Distributed RL Training**:   * **Distributed RL Training**:
-    Introduce multi-agent or distributed training environments for large-scale RL scenarios.+    Introduce multi-agent or distributed training environments for **large-scale RL** scenarios.
  
   * **Visualization Dashboards**:   * **Visualization Dashboards**:
Line 231: Line 231:
  
   * **Recurrent Architectures**:   * **Recurrent Architectures**:
-    Incorporate LSTM or GRU-based RL for handling temporal dependencies.+    Incorporate **LSTM** or **GRU-based RL** for handling temporal dependencies.
  
 ===== Conclusion ===== ===== Conclusion =====
ai_reinforcement_learning.1748544441.txt.gz · Last modified: 2025/05/29 18:47 by eagleeyenebula