User Tools

Site Tools


ai_real_time_learner

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
ai_real_time_learner [2025/05/29 16:56] – [Purpose and Goals] eagleeyenebulaai_real_time_learner [2025/05/29 17:01] (current) – [Advanced Features] eagleeyenebula
Line 23: Line 23:
  
 1. Enabling dynamic learning in production environments. 1. Enabling dynamic learning in production environments.
 +
 2. Reducing time and resource consumption compared to traditional full retraining approaches. 2. Reducing time and resource consumption compared to traditional full retraining approaches.
 +
 3. Enhancing the responsiveness of real-time AI systems, such as recommendations and predictions. 3. Enhancing the responsiveness of real-time AI systems, such as recommendations and predictions.
  
Line 56: Line 58:
  
   * **SGDClassifier**:   * **SGDClassifier**:
-    The `SGDClassifiermodel serves as the foundational machine learning algorithm, enabling the system to handle large-scale datasets efficiently and adapt incrementally with in-memory optimization techniques.+    The **SGDClassifier** model serves as the foundational machine learning algorithm, enabling the system to handle large-scale datasets efficiently and adapt incrementally with in-memory optimization techniques.
  
   * **Incremental Updates**:   * **Incremental Updates**:
-    The **`partial_fit()`** function is the core utility of the **AI Real-Time Learner**, allowing the model to be updated with small data batches in real-time.+    The **partial_fit()** function is the core utility of the **AI Real-Time Learner**, allowing the model to be updated with small data batches in real-time.
  
 ===== Example Usages ===== ===== Example Usages =====
Line 68: Line 70:
  
 This example demonstrates the deployment of the **RealTimeLearner** system for basic real-time updates with a small dataset. This example demonstrates the deployment of the **RealTimeLearner** system for basic real-time updates with a small dataset.
- +<code> 
-```python+python
 import numpy as np import numpy as np
 from sklearn.linear_model import SGDClassifier from sklearn.linear_model import SGDClassifier
Line 83: Line 85:
         """         """
         self.model.partial_fit(X, y, classes=np.unique(y))         self.model.partial_fit(X, y, classes=np.unique(y))
- +</code> 
-Example data stream+**Example data stream** 
 +<code>
 X_stream = [[1, 2], [2, 3], [3, 4]] X_stream = [[1, 2], [2, 3], [3, 4]]
 y_stream = [0, 1, 1] y_stream = [0, 1, 1]
- +</code> 
-Real-time updates+**Real-time updates** 
 +<code>
 learner = RealTimeLearner() learner = RealTimeLearner()
 for X_batch, y_batch in zip(X_stream, y_stream): for X_batch, y_batch in zip(X_stream, y_stream):
Line 94: Line 98:
  
 print("Model has been updated for streaming data.") print("Model has been updated for streaming data.")
-```+</code>
  
 ==== Example 2: Real-Time Learning in Predictive Systems ==== ==== Example 2: Real-Time Learning in Predictive Systems ====
  
 The **Real-Time Learner** can power predictive systems where frequent updates are required. Below is an example for stock price prediction: The **Real-Time Learner** can power predictive systems where frequent updates are required. Below is an example for stock price prediction:
- +<code> 
-```python+python
 import numpy as np import numpy as np
  
Line 116: Line 120:
         return self.model.predict(X)         return self.model.predict(X)
  
- +</code> 
-Initialize the learner+**Initialize the learner** 
 +<code>
 learner = StockPredictionLearner() learner = StockPredictionLearner()
 initial_data = np.array([[100, 1], [101, 2], [102, 3]]) initial_data = np.array([[100, 1], [101, 2], [102, 3]])
 initial_labels = [0, 1, 1] initial_labels = [0, 1, 1]
- +</code> 
-Fit initial model with stock trends+**Fit initial model with stock trends** 
 +<code>
 learner.update_model(initial_data, initial_labels) learner.update_model(initial_data, initial_labels)
- +</code> 
-Simulate new stock price streaming data+**Simulate new stock price streaming data** 
 +<code>
 stream_data = np.array([[103, 4], [104, 5]]) stream_data = np.array([[103, 4], [104, 5]])
 predictions = learner.predict(stream_data) predictions = learner.predict(stream_data)
 print(f"Predicted Trends: {predictions}") print(f"Predicted Trends: {predictions}")
-```+</code>
  
 ==== Example 3: Real-Time Fraud Detection ==== ==== Example 3: Real-Time Fraud Detection ====
  
 Design an AI fraud detection system where updates are required to account for evolving patterns in fraudulent activities. Design an AI fraud detection system where updates are required to account for evolving patterns in fraudulent activities.
- +<code> 
-```python+python
 class FraudDetectionLearner(RealTimeLearner): class FraudDetectionLearner(RealTimeLearner):
     """     """
Line 152: Line 159:
             predictions.append(self.model.predict([X])[0])             predictions.append(self.model.predict([X])[0])
         return predictions         return predictions
 +</code>
  
- +**Example transactions (X) and labels (y).** 
-Example transactions (X) and labels (y).+<code>
 transaction_data = [[5000, 1], [10000, 1], [7500, 0]] transaction_data = [[5000, 1], [10000, 1], [7500, 0]]
 class_labels = [1, 1, 0]  # Fraudulent (1) or Not (0). class_labels = [1, 1, 0]  # Fraudulent (1) or Not (0).
Line 161: Line 169:
 fraud_predictions = fraud_detector.handle_streaming_data(transaction_data, class_labels) fraud_predictions = fraud_detector.handle_streaming_data(transaction_data, class_labels)
 print(f"Fraud Predictions: {fraud_predictions}") print(f"Fraud Predictions: {fraud_predictions}")
-```+</code>
  
 ===== Advanced Features ===== ===== Advanced Features =====
Line 167: Line 175:
 The **Real-Time Learner** system enables a wide array of advanced features for various machine learning applications: The **Real-Time Learner** system enables a wide array of advanced features for various machine learning applications:
  
-  1. **Dynamic Model Evolution**: +1. **Dynamic Model Evolution**: 
-     Update models in response to system feedback in real-time without halting operations+       * Update models in response to system feedback in real-time without halting operations.
- +
-  2. **Large-Scale Data Handling**: +
-     Handle vast data streams by splitting it into smaller batches processed incrementally.+
  
-  3. **Online Machine Learning**: +2. **Large-Scale Data Handling**: 
-     Train models in environments where data arrives continuously or evolves over time, such as IoT, financial services, or supply chain systems.+       * Handle vast data streams by splitting it into smaller batches processed incrementally.
  
-  4. **Custom Streaming Pipelines**: +3. **Online Machine Learning**: 
-     Create models tailored to specific streaming applications, such as dynamic pricingrecommendation enginesand fraud detection.+       * Train models in environments where data arrives continuously or evolves over time, such as IoTfinancial servicesor supply chain systems.
  
 +4. **Custom Streaming Pipelines**:
 +       * Create models tailored to specific streaming applications, such as dynamic pricing, recommendation engines, and fraud detection.
 ===== Use Cases ===== ===== Use Cases =====
  
ai_real_time_learner.1748537764.txt.gz · Last modified: 2025/05/29 16:56 by eagleeyenebula