User Tools

Site Tools


ai_predictive_forecaster

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
ai_predictive_forecaster [2025/05/29 15:44] – [Class Overview] eagleeyenebulaai_predictive_forecaster [2025/05/29 15:50] (current) – [Class Overview] eagleeyenebula
Line 103: Line 103:
  
 **Error Handling**: **Error Handling**:
-   * Raises errors if the model is not fitted before calling `forecast()`.+   * Raises errors if the model is not fitted before calling **forecast()**.
  
  
Line 112: Line 112:
 1. **Import the Class**: 1. **Import the Class**:
      * Import the `PredictiveForecaster` module into your script:      * Import the `PredictiveForecaster` module into your script:
-   <code>+<code>
    python    python
    from ai_predictive_forecaster import PredictiveForecaster    from ai_predictive_forecaster import PredictiveForecaster
-   </code>+</code>
  
 2. **Initialize the Forecaster**: 2. **Initialize the Forecaster**:
      * Set ARIMA parameters and instantiate the `PredictiveForecaster`:      * Set ARIMA parameters and instantiate the `PredictiveForecaster`:
-   <code>+<code>
    python    python
    forecaster = PredictiveForecaster(model_order=(5, 1, 0))    forecaster = PredictiveForecaster(model_order=(5, 1, 0))
-   </code>+</code>
  
 3. **Fit the Model**: 3. **Fit the Model**:
      * Provide time-series historical data to train the model:      * Provide time-series historical data to train the model:
-   <code>   +<code>   
    python    python
    historical_data = [100, 110, 125, 130, 120, 150]    historical_data = [100, 110, 125, 130, 120, 150]
    forecaster.fit(historical_data)    forecaster.fit(historical_data)
-   </code>+</code>
  
 4. **Forecast Future Values**: 4. **Forecast Future Values**:
    Specify how many time steps to predict:    Specify how many time steps to predict:
-   <code>+<code>
    python    python
    future_predictions = forecaster.forecast(steps=5)    future_predictions = forecaster.forecast(steps=5)
    print(f"Forecast: {future_predictions}")    print(f"Forecast: {future_predictions}")
-   </code>+</code>
  
 ===== Advanced Examples ===== ===== Advanced Examples =====
Line 275: Line 275:
 ===== Conclusion ===== ===== Conclusion =====
  
-The **AI Predictive Forecaster** offers solid framework for time-series forecasting, relying on the proven ARIMA model to provide accurate and adaptable predictions. Its simplistic yet extensible design makes it a powerful tool for data scientists and engineers working with chronological datasets. From sales forecasts to anomaly detectionthis flexible utility simplifies the prediction process while ensuring accuracy and reproducibility.+The **AI Predictive Forecaster** delivers reliable and intuitive framework for time-series forecasting, enabling users to generate high-quality predictions with ease. Built upon the trusted **ARIMA** model from statsmodels, it allows analysts and engineers to capture seasonality, trends, and noise within chronological datasets. Its clean **API** and modular structure make integration straightforward, whether in stand-alone scripts or as part of larger AI systems, ensuring rapid deployment and iteration. 
 + 
 +Beyond its core functionality, the tool is built with extensibility in mind allowing for customization and experimentation with different parameter sets or even model substitutions. From forecasting sales, demand, and resource utilization to detecting anomalies in system metrics or financial time series, the AI Predictive Forecaster stands as a versatile asset. It bridges statistical rigor with practical usability, empowering teams to make informed, data-driven decisions confidently and consistently.
ai_predictive_forecaster.1748533449.txt.gz · Last modified: 2025/05/29 15:44 by eagleeyenebula