User Tools

Site Tools


ai_pipeline_optimizer

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
ai_pipeline_optimizer [2025/05/29 13:12] – [Example 1: Multiple Models with Automated Search] eagleeyenebulaai_pipeline_optimizer [2025/05/29 13:17] (current) – [Conclusion] eagleeyenebula
Line 188: Line 188:
  
 Optimize using a specific scoring metric: Optimize using a specific scoring metric:
-```python+<code> 
 +python
 param_grid = { param_grid = {
     "C": [0.1, 1, 10],     "C": [0.1, 1, 10],
Line 200: Line 201:
     param_grid     param_grid
 ) )
- +</code> 
-Use roc_auc as the scoring metric+**Use roc_auc as the scoring metric** 
 +<code>
 best_model = optimizer.optimize( best_model = optimizer.optimize(
     X_train, y_train     X_train, y_train
 ) )
 print(f"Best Parameters: {best_model.get_params()}") print(f"Best Parameters: {best_model.get_params()}")
-``` +</code>
- +
---- +
 ==== Example 3: Extending to Non-sklearn Models ==== ==== Example 3: Extending to Non-sklearn Models ====
  
 Apply optimization to non-sklearn pipelines by creating a wrapper: Apply optimization to non-sklearn pipelines by creating a wrapper:
-```python+<code> 
 +python
 from xgboost import XGBClassifier from xgboost import XGBClassifier
  
Line 223: Line 223:
 optimizer = PipelineOptimizer(XGBClassifier(use_label_encoder=False), param_grid) optimizer = PipelineOptimizer(XGBClassifier(use_label_encoder=False), param_grid)
 best_xgb = optimizer.optimize(X_train, y_train) best_xgb = optimizer.optimize(X_train, y_train)
-``` +</code>
- +
----+
  
 ==== Example 4: Parallel/Asynchronous Optimization ==== ==== Example 4: Parallel/Asynchronous Optimization ====
  
 Enhance execution time for large hyperparameter grids: Enhance execution time for large hyperparameter grids:
-```python+<code> 
 +python
 from joblib import Parallel, delayed from joblib import Parallel, delayed
  
Line 243: Line 242:
 ) )
 print(f"Top Model Configuration: {results[0].get_params()}") print(f"Top Model Configuration: {results[0].get_params()}")
-``` +</code>
- +
----+
  
 ===== Best Practices ===== ===== Best Practices =====
  
 1. **Start Small**: 1. **Start Small**:
-   Begin with smaller parameter grids before scaling to larger configurations to save time and resources.+   Begin with smaller parameter grids before scaling to larger configurations to save time and resources.
  
 2. **Use Relevant Metrics**: 2. **Use Relevant Metrics**:
-   Select scoring metrics aligned with the problem domain (e.g., `roc_aucfor imbalanced classification problems).+   Select scoring metrics aligned with the problem domain (e.g., **roc_auc** for imbalanced classification problems).
  
 3. **Cross-Validation Best Practices**: 3. **Cross-Validation Best Practices**:
-   Ensure the training data is appropriately shuffled when using `cvto avoid potential data leakage.+   Ensure the training data is appropriately shuffled when using **cv** to avoid potential data leakage.
  
 4. **Parallel Execution**: 4. **Parallel Execution**:
-   For large-scale optimization, enable parallelism using `n_jobs=-1`.+   For large-scale optimization, enable parallelism using **n_jobs=-1**.
  
 5. **Document Results**: 5. **Document Results**:
-   Log parameter configurations and scores for reproducibility. +   Log parameter configurations and scores for reproducibility.
- +
----+
  
 ===== Extending the Framework ===== ===== Extending the Framework =====
  
-The design of `PipelineOptimizerallows easy extensibility:+The design of **PipelineOptimizer** allows easy extensibility:
  
 1. **Support for RandomizedSearchCV**: 1. **Support for RandomizedSearchCV**:
-   Replace `GridSearchCVwith `RandomizedSearchCVfor faster optimization: +     Replace **GridSearchCV** with **RandomizedSearchCV** for faster optimization: 
-   ```python+<code> 
 +   python
    from sklearn.model_selection import RandomizedSearchCV    from sklearn.model_selection import RandomizedSearchCV
    grid_search = RandomizedSearchCV(estimator=self.model, param_distributions=self.param_grid, n_iter=50, scoring="accuracy", cv=5)    grid_search = RandomizedSearchCV(estimator=self.model, param_distributions=self.param_grid, n_iter=50, scoring="accuracy", cv=5)
-   ```+</code>
  
 2. **Integrating with Workflows**: 2. **Integrating with Workflows**:
-   Use the optimizer within larger pipelines, such as scikit-learn'`Pipelineobjects.+   Use the optimizer within larger pipelines, such as scikit-learn'**Pipeline** objects.
  
 3. **Custom Models**: 3. **Custom Models**:
-   Wrap additional libraries like LightGBM, CatBoost, or TensorFlow/Keras models for tuning.+   Wrap additional libraries like **LightGBM****CatBoost**, or **TensorFlow/Keras** models for tuning. 
 +===== Conclusion =====
  
---+The **AI Pipeline Optimizer** simplifies **hyperparameter tuning** with its automated, flexible, and modular approach. By leveraging its powerful grid search capabilities, coupled with extensible design, this tool ensures models achieve optimal performance across a wide range of use cases. Whether you're working on small-scale prototypes or enterprise-grade systems, the **PipelineOptimizer** provides all the flexibility and power you need.
- +
-===== Conclusion =====+
  
-The **AI Pipeline Optimizer** simplifies hyperparameter tuning with its automated, flexible, and modular approachBy leveraging its powerful grid search capabilitiescoupled with extensible design, this tool ensures models achieve optimal performance across a wide range of use casesWhether you're working on small-scale prototypes or enterprise-grade systems, the PipelineOptimizer provides all the flexibility and power you need.+Its intuitive configuration and seamless compatibility with popular machine learning frameworks make it ideal for teams seeking to accelerate experimentation and model refinementThe optimizer supports both exhaustive and selective search strategiesenabling users to balance performance gains with computational efficiencyWith built-in logging, result tracking, and integration hooksit not only streamlines the tuning process but also fosters repeatability and insight-driven optimization turning performance tuning into a strategic advantage in AI development.
ai_pipeline_optimizer.1748524369.txt.gz · Last modified: 2025/05/29 13:12 by eagleeyenebula