User Tools

Site Tools


ai_pipeline_optimizer

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
ai_pipeline_optimizer [2025/05/29 13:03] – [Purpose of the AI Pipeline Optimizer] eagleeyenebulaai_pipeline_optimizer [2025/05/29 13:17] (current) – [Conclusion] eagleeyenebula
Line 25: Line 25:
  
 1. **Automatic Hyperparameter Tuning** 1. **Automatic Hyperparameter Tuning**
-   * Uses scikit-learn’s `GridSearchCVto explore and select the best combination of hyperparameters.+   * Uses scikit-learn’s **GridSearchCV** to explore and select the best combination of hyperparameters.
    * Customizable parameter grids for different types of models.    * Customizable parameter grids for different types of models.
  
 2. **Cross-Validation** 2. **Cross-Validation**
-   * Ensures robust evaluation by utilizing cross-validation (`cv`) during grid search.+   * Ensures robust evaluation by utilizing cross-validation (**cv**) during grid search.
  
 3. **Pluggable Model Architecture** 3. **Pluggable Model Architecture**
-   * Works with any compliant models, such as scikit-learn, XGBoost, LightGBM, etc.+   * Works with any compliant models, such as **scikit-learn****XGBoost****LightGBM**, etc.
  
 4. **Custom Scoring** 4. **Custom Scoring**
-   * Allows optimization based on scoring metrics like `accuracy``f1``roc_auc`, or any custom metric supplied.+   * Allows optimization based on scoring metrics like **accuracy****f1****roc_auc**, or any custom metric supplied.
  
 5. **Reusability** 5. **Reusability**
    * Modular architecture ensures usability across multiple pipelines and projects with minimal configuration effort.    * Modular architecture ensures usability across multiple pipelines and projects with minimal configuration effort.
- 
---- 
- 
 ===== Class Overview ===== ===== Class Overview =====
  
-Below are the technical details and methods provided by the `PipelineOptimizerclass.+Below are the technical details and methods provided by the **PipelineOptimizer** class.
  
-### `PipelineOptimizerClass+**"PipelineOptimizerClass**
  
 **Primary Objective:**   **Primary Objective:**  
-Tune hyperparameters to optimize pipeline performance via grid search.+  * Tune hyperparameters to optimize pipeline performance via grid search.
  
----+**Constructor:** "__init__(model, param_grid)"
  
-### Constructor: `__init__(model, param_grid)` 
 **Signature**: **Signature**:
-```python+ 
 +<code> 
 +python
 def __init__(self, model, param_grid): def __init__(self, model, param_grid):
     """     """
Line 62: Line 60:
     :param param_grid: Dictionary of hyperparameter options to search.     :param param_grid: Dictionary of hyperparameter options to search.
     """     """
-```+</code>
 **Parameters**: **Parameters**:
-  - `model`: Any estimator object compatible with scikit-learn (e.g., `RandomForestClassifier``LogisticRegression`). +  * **model**: Any estimator object compatible with scikit-learn (e.g., **RandomForestClassifier****LogisticRegression**). 
-  `param_grid`: A dictionary specifying the hyperparameter search space.+  `param_grid`: A dictionary specifying the hyperparameter search space.
  
----+**Method:** "optimize(X_train, y_train)"
  
-### Method: `optimize(X_train, y_train)` 
 **Signature**: **Signature**:
-```python+<code> 
 +python
 def optimize(self, X_train, y_train): def optimize(self, X_train, y_train):
     """     """
Line 79: Line 77:
     :return: Trained estimator with the best hyperparameter set.     :return: Trained estimator with the best hyperparameter set.
     """     """
-```+</code>
  
 **Process**: **Process**:
Line 87: Line 85:
  
 **Example**: **Example**:
-```python+<code> 
 +python
 from sklearn.ensemble import RandomForestClassifier from sklearn.ensemble import RandomForestClassifier
- +</code> 
-Define a parameter grid+**Define a parameter grid** 
 +<code>
 param_grid = { param_grid = {
     "n_estimators": [10, 50, 100],     "n_estimators": [10, 50, 100],
Line 101: Line 101:
 ) )
 best_model = optimizer.optimize(X_train, y_train) best_model = optimizer.optimize(X_train, y_train)
-``` +</code>
- +
---- +
 ===== Workflow ===== ===== Workflow =====
  
-### Typical Steps for Using the PipelineOptimizer:+**Typical Steps for Using the PipelineOptimizer:**
  
 1. **Setup the Training Data**: 1. **Setup the Training Data**:
-   Configure `X_trainand `y_trainfrom your dataset.+   Configure **X_train** and **y_train** from your dataset.
  
 2. **Define a Model**: 2. **Define a Model**:
-   Initialize the model you want to optimize. For example: +   Initialize the model you want to optimize. For example: 
-   ```python+   <code> 
 +   python
    from sklearn.ensemble import RandomForestClassifier    from sklearn.ensemble import RandomForestClassifier
    model = RandomForestClassifier()    model = RandomForestClassifier()
-   ```+   </code>
  
 3. **Create a Parameter Grid**: 3. **Create a Parameter Grid**:
    Define a dictionary of hyperparameter options:    Define a dictionary of hyperparameter options:
-   ```python+   <code> 
 +   python
    param_grid = {    param_grid = {
        "n_estimators": [10, 50, 100],        "n_estimators": [10, 50, 100],
        "max_depth": [None, 10, 20, 30],        "max_depth": [None, 10, 20, 30],
    }    }
-   ```+   </code>
  
 4. **Optimize the Model**: 4. **Optimize the Model**:
-   Create an instance of the `PipelineOptimizerclass and optimize: +   Create an instance of the **PipelineOptimizer** class and optimize: 
-   ```python+   <code> 
 +   python
    optimizer = PipelineOptimizer(model, param_grid)    optimizer = PipelineOptimizer(model, param_grid)
    best_model = optimizer.optimize(X_train, y_train)    best_model = optimizer.optimize(X_train, y_train)
-   ```+   </code>
  
 5. **Evaluate the Optimized Model**: 5. **Evaluate the Optimized Model**:
-   Evaluate the optimized model on a validation/test dataset: +     Evaluate the optimized model on a validation/test dataset: 
-   ```python+   <code> 
 +   python
    from sklearn.metrics import accuracy_score    from sklearn.metrics import accuracy_score
  
Line 143: Line 144:
    acc = accuracy_score(y_test, y_pred)    acc = accuracy_score(y_test, y_pred)
    print(f"Test Accuracy: {acc}")    print(f"Test Accuracy: {acc}")
-   ``` +   </code>
- +
----+
  
 ===== Advanced Examples ===== ===== Advanced Examples =====
  
 The following examples showcase complex and advanced practical use cases for the optimizer: The following examples showcase complex and advanced practical use cases for the optimizer:
- 
---- 
- 
 ==== Example 1: Multiple Models with Automated Search ==== ==== Example 1: Multiple Models with Automated Search ====
  
 Optimize different models simultaneously: Optimize different models simultaneously:
-```python+<code> 
 +python
 from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier
- +</code> 
-Define multiple parameter grids+**Define multiple parameter grids** 
 +<code>
 grid_rf = { grid_rf = {
     "n_estimators": [50, 100, 200],     "n_estimators": [50, 100, 200],
Line 168: Line 166:
     "n_estimators": [50, 100],     "n_estimators": [50, 100],
 } }
- +</code> 
-Initialize optimizers+**Initialize optimizers** 
 +<code>
 optimizer_rf = PipelineOptimizer(RandomForestClassifier(), grid_rf) optimizer_rf = PipelineOptimizer(RandomForestClassifier(), grid_rf)
 optimizer_gb = PipelineOptimizer(GradientBoostingClassifier(), grid_gb) optimizer_gb = PipelineOptimizer(GradientBoostingClassifier(), grid_gb)
- +</code> 
-Train and optimize models+**Train and optimize models** 
 +<code>
 best_rf = optimizer_rf.optimize(X_train, y_train) best_rf = optimizer_rf.optimize(X_train, y_train)
 best_gb = optimizer_gb.optimize(X_train, y_train) best_gb = optimizer_gb.optimize(X_train, y_train)
- +</code> 
-Evaluate the better-performing model+**Evaluate the better-performing model** 
 +<code>
 rf_score = accuracy_score(y_test, best_rf.predict(X_test)) rf_score = accuracy_score(y_test, best_rf.predict(X_test))
 gb_score = accuracy_score(y_test, best_gb.predict(X_test)) gb_score = accuracy_score(y_test, best_gb.predict(X_test))
Line 183: Line 184:
 print(f"Best RandomForest Accuracy: {rf_score}") print(f"Best RandomForest Accuracy: {rf_score}")
 print(f"Best GradientBoosting Accuracy: {gb_score}") print(f"Best GradientBoosting Accuracy: {gb_score}")
-``` +</code>
- +
---- +
 ==== Example 2: Custom Scoring ==== ==== Example 2: Custom Scoring ====
  
 Optimize using a specific scoring metric: Optimize using a specific scoring metric:
-```python+<code> 
 +python
 param_grid = { param_grid = {
     "C": [0.1, 1, 10],     "C": [0.1, 1, 10],
Line 202: Line 201:
     param_grid     param_grid
 ) )
- +</code> 
-Use roc_auc as the scoring metric+**Use roc_auc as the scoring metric** 
 +<code>
 best_model = optimizer.optimize( best_model = optimizer.optimize(
     X_train, y_train     X_train, y_train
 ) )
 print(f"Best Parameters: {best_model.get_params()}") print(f"Best Parameters: {best_model.get_params()}")
-``` +</code>
- +
---- +
 ==== Example 3: Extending to Non-sklearn Models ==== ==== Example 3: Extending to Non-sklearn Models ====
  
 Apply optimization to non-sklearn pipelines by creating a wrapper: Apply optimization to non-sklearn pipelines by creating a wrapper:
-```python+<code> 
 +python
 from xgboost import XGBClassifier from xgboost import XGBClassifier
  
Line 225: Line 223:
 optimizer = PipelineOptimizer(XGBClassifier(use_label_encoder=False), param_grid) optimizer = PipelineOptimizer(XGBClassifier(use_label_encoder=False), param_grid)
 best_xgb = optimizer.optimize(X_train, y_train) best_xgb = optimizer.optimize(X_train, y_train)
-``` +</code>
- +
----+
  
 ==== Example 4: Parallel/Asynchronous Optimization ==== ==== Example 4: Parallel/Asynchronous Optimization ====
  
 Enhance execution time for large hyperparameter grids: Enhance execution time for large hyperparameter grids:
-```python+<code> 
 +python
 from joblib import Parallel, delayed from joblib import Parallel, delayed
  
Line 245: Line 242:
 ) )
 print(f"Top Model Configuration: {results[0].get_params()}") print(f"Top Model Configuration: {results[0].get_params()}")
-``` +</code>
- +
----+
  
 ===== Best Practices ===== ===== Best Practices =====
  
 1. **Start Small**: 1. **Start Small**:
-   Begin with smaller parameter grids before scaling to larger configurations to save time and resources.+   Begin with smaller parameter grids before scaling to larger configurations to save time and resources.
  
 2. **Use Relevant Metrics**: 2. **Use Relevant Metrics**:
-   Select scoring metrics aligned with the problem domain (e.g., `roc_aucfor imbalanced classification problems).+   Select scoring metrics aligned with the problem domain (e.g., **roc_auc** for imbalanced classification problems).
  
 3. **Cross-Validation Best Practices**: 3. **Cross-Validation Best Practices**:
-   Ensure the training data is appropriately shuffled when using `cvto avoid potential data leakage.+   Ensure the training data is appropriately shuffled when using **cv** to avoid potential data leakage.
  
 4. **Parallel Execution**: 4. **Parallel Execution**:
-   For large-scale optimization, enable parallelism using `n_jobs=-1`.+   For large-scale optimization, enable parallelism using **n_jobs=-1**.
  
 5. **Document Results**: 5. **Document Results**:
-   Log parameter configurations and scores for reproducibility. +   Log parameter configurations and scores for reproducibility.
- +
----+
  
 ===== Extending the Framework ===== ===== Extending the Framework =====
  
-The design of `PipelineOptimizerallows easy extensibility:+The design of **PipelineOptimizer** allows easy extensibility:
  
 1. **Support for RandomizedSearchCV**: 1. **Support for RandomizedSearchCV**:
-   Replace `GridSearchCVwith `RandomizedSearchCVfor faster optimization: +     Replace **GridSearchCV** with **RandomizedSearchCV** for faster optimization: 
-   ```python+<code> 
 +   python
    from sklearn.model_selection import RandomizedSearchCV    from sklearn.model_selection import RandomizedSearchCV
    grid_search = RandomizedSearchCV(estimator=self.model, param_distributions=self.param_grid, n_iter=50, scoring="accuracy", cv=5)    grid_search = RandomizedSearchCV(estimator=self.model, param_distributions=self.param_grid, n_iter=50, scoring="accuracy", cv=5)
-   ```+</code>
  
 2. **Integrating with Workflows**: 2. **Integrating with Workflows**:
-   Use the optimizer within larger pipelines, such as scikit-learn'`Pipelineobjects.+   Use the optimizer within larger pipelines, such as scikit-learn'**Pipeline** objects.
  
 3. **Custom Models**: 3. **Custom Models**:
-   Wrap additional libraries like LightGBM, CatBoost, or TensorFlow/Keras models for tuning.+   Wrap additional libraries like **LightGBM****CatBoost**, or **TensorFlow/Keras** models for tuning. 
 +===== Conclusion =====
  
---+The **AI Pipeline Optimizer** simplifies **hyperparameter tuning** with its automated, flexible, and modular approach. By leveraging its powerful grid search capabilities, coupled with extensible design, this tool ensures models achieve optimal performance across a wide range of use cases. Whether you're working on small-scale prototypes or enterprise-grade systems, the **PipelineOptimizer** provides all the flexibility and power you need.
- +
-===== Conclusion =====+
  
-The **AI Pipeline Optimizer** simplifies hyperparameter tuning with its automated, flexible, and modular approachBy leveraging its powerful grid search capabilitiescoupled with extensible design, this tool ensures models achieve optimal performance across a wide range of use casesWhether you're working on small-scale prototypes or enterprise-grade systems, the PipelineOptimizer provides all the flexibility and power you need.+Its intuitive configuration and seamless compatibility with popular machine learning frameworks make it ideal for teams seeking to accelerate experimentation and model refinementThe optimizer supports both exhaustive and selective search strategiesenabling users to balance performance gains with computational efficiencyWith built-in logging, result tracking, and integration hooksit not only streamlines the tuning process but also fosters repeatability and insight-driven optimization turning performance tuning into a strategic advantage in AI development.
ai_pipeline_optimizer.1748523831.txt.gz · Last modified: 2025/05/29 13:03 by eagleeyenebula