User Tools

Site Tools


ai_performance_profiler

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
ai_performance_profiler [2025/05/29 03:20] – [Workflow] eagleeyenebulaai_performance_profiler [2025/05/29 03:21] (current) – [Key Features] eagleeyenebula
Line 22: Line 22:
 ===== Key Features ===== ===== Key Features =====
  
-1. **Execution Time Profiling (**profile_stage**)**+1. **Execution Time Profiling **(profile_stage)****
    * Dynamically analyze the time spent by functions or code blocks.    * Dynamically analyze the time spent by functions or code blocks.
    * Logs all execution times to a log file for a clear historical performance record.    * Logs all execution times to a log file for a clear historical performance record.
  
-2. **Caching (**cache_step**)**+2. **Caching **(cache_step)****
    * Built-in caching system to store computationally expensive function results.    * Built-in caching system to store computationally expensive function results.
    * Uses **functools.lru_cache** with a configurable cache size for efficient memory utilization.    * Uses **functools.lru_cache** with a configurable cache size for efficient memory utilization.
Line 54: Line 54:
  
 1. **Initialization:** 1. **Initialization:**
-   * Instantiate the PerformanceProfiler class. Optionally specify the log file's name.+   * Instantiate the **PerformanceProfiler** class. Optionally specify the log file's name.
 <code> <code>
    python    python
ai_performance_profiler.1748488802.txt.gz · Last modified: 2025/05/29 03:20 by eagleeyenebula