User Tools

Site Tools


ai_model_drift_monitoring

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
ai_model_drift_monitoring [2025/05/28 03:20] – [Example 2: Handling Data Drift in Real-Time] eagleeyenebulaai_model_drift_monitoring [2025/05/28 03:23] (current) – [Best Practices] eagleeyenebula
Line 159: Line 159:
 Adapt thresholds dynamically based on business logic or external inputs. Adapt thresholds dynamically based on business logic or external inputs.
  
-```python+<code> 
 +python
 class CustomDriftMonitoring(ModelDriftMonitoring): class CustomDriftMonitoring(ModelDriftMonitoring):
     """     """
Line 178: Line 179:
         return self.detect_drift(new_data, reference_data, threshold)         return self.detect_drift(new_data, reference_data, threshold)
  
- +</code> 
-Usage+**Usage** 
 +<code>
 custom_monitor = CustomDriftMonitoring(default_threshold=0.1) custom_monitor = CustomDriftMonitoring(default_threshold=0.1)
 reference_data = [10.0, 10.2, 10.1, 10.3, 10.1] reference_data = [10.0, 10.2, 10.1, 10.3, 10.1]
Line 186: Line 188:
 alert = custom_monitor.detect_drift_with_custom_threshold(new_data, reference_data, condition="critical") alert = custom_monitor.detect_drift_with_custom_threshold(new_data, reference_data, condition="critical")
 print(f"Critical Condition Drift Detected: {alert}") print(f"Critical Condition Drift Detected: {alert}")
-```+</code>
  
 **Explanation**:   **Explanation**:  
-Dynamically adjusts drift thresholds based on the current operating conditions, such as critical alerts or routine monitoring. +   Dynamically adjusts drift thresholds based on the current operating conditions, such as critical alerts or routine monitoring.
- +
---- +
 ==== Example 4: Visualizing Drift ==== ==== Example 4: Visualizing Drift ====
  
 Use visualization to provide additional context to detected drift. Use visualization to provide additional context to detected drift.
  
-```python+<code> 
 +python
 import matplotlib.pyplot as plt import matplotlib.pyplot as plt
 from ai_model_drift_monitoring import ModelDriftMonitoring from ai_model_drift_monitoring import ModelDriftMonitoring
Line 215: Line 215:
     plt.legend()     plt.legend()
     plt.show()     plt.show()
-```+</code>
  
 **Explanation**:   **Explanation**:  
-Provides a visual representation of data distributions to verify drift and assess its impact. +   Provides a visual representation of data distributions to verify drift and assess its impact.
- +
---- +
 ===== Extensibility ===== ===== Extensibility =====
  
 1. **Incorporate Statistical Methods**:   1. **Incorporate Statistical Methods**:  
-   Extend the framework to use advanced statistical tests like Kolmogorov-Smirnov Test, Wasserstein Distance, or Chi-Square Test.+   Extend the framework to use advanced statistical tests like Kolmogorov-Smirnov Test, Wasserstein Distance, or Chi-Square Test.
  
 2. **Multi-Dimensional Drift Detection**:   2. **Multi-Dimensional Drift Detection**:  
-   Expand from a one-dimensional comparison to multi-dimensional feature space drift analysis.+   Expand from a one-dimensional comparison to multi-dimensional feature space drift analysis.
  
 3. **Logging Enhancements**:   3. **Logging Enhancements**:  
-   Add structured logging (e.g., JSON logs) for integration with monitoring and alerting systems like Grafana or ELK.+   Add structured logging (e.g., JSON logs) for integration with monitoring and alerting systems like Grafana or ELK.
  
 4. **Actionable Insights**:   4. **Actionable Insights**:  
-   Extend the alert system to trigger specific actions, such as retraining your model when drift is detected.+   Extend the alert system to trigger specific actions, such as retraining your model when drift is detected.
  
 5. **Monitoring Pipelines**:   5. **Monitoring Pipelines**:  
-   Integrate with data pipelines in tools like Apache Kafka or cloud platforms for large-scale drift monitoring. +   Integrate with data pipelines in tools like Apache Kafka or cloud platforms for large-scale drift monitoring.
- +
---- +
 ===== Best Practices ===== ===== Best Practices =====
  
-**Consistency in Data Collection**:   +**Consistency in Data Collection**:   
-  Ensure that both reference and incoming data follow the same preprocessing and scaling procedures+  Ensure that both reference and incoming data follow the same preprocessing and scaling procedures.
- +
-- **Dynamic Thresholding**:   +
-  Adjust thresholds flexibly for different use cases, such as critical systems or lenient applications. +
- +
-- **Frequent Evaluation**:   +
-  Perform regular drift checks to avoid sudden model deterioration.+
  
-**Visualization**:   +**Dynamic Thresholding**:   
-  Use visualization tools to complement automated drift detection alerts for better understanding.+  * Adjust thresholds flexibly for different use cases, such as critical systems or lenient applications.
  
-**Automation**:   +**Frequent Evaluation**:   
-  Automate retraining or data validation when persistent drift is detected.+  * Perform regular drift checks to avoid sudden model deterioration.
  
----+**Visualization**:   
 +  * Use visualization tools to complement automated drift detection alerts for better understanding.
  
 +**Automation**:  
 +  * Automate retraining or data validation when persistent drift is detected.
 ===== Conclusion ===== ===== Conclusion =====
  
ai_model_drift_monitoring.1748402450.txt.gz · Last modified: 2025/05/28 03:20 by eagleeyenebula