User Tools

Site Tools


ai_model_drift_monitoring

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
ai_model_drift_monitoring [2025/05/28 03:12] – [Key Features] eagleeyenebulaai_model_drift_monitoring [2025/05/28 03:23] (current) – [Best Practices] eagleeyenebula
Line 42: Line 42:
 The `ModelDriftMonitoring` class detects statistical drift between new data and reference (training) data. The `ModelDriftMonitoring` class detects statistical drift between new data and reference (training) data.
  
-```python+<code> 
 +python
 import logging import logging
  
Line 72: Line 73:
             logging.error(f"Drift detection failed: {e}")             logging.error(f"Drift detection failed: {e}")
             return False             return False
-```+</code>
  
 **Core Method**: **Core Method**:
-- `detect_drift(new_data, reference_data, threshold=0.1)`  +<code> 
-  Detects drift by comparing the means of reference data and incoming data. If the percentage difference exceeds the specified `threshold`, drift is flagged. +detect_drift(new_data, reference_data, threshold=0.1): 
- +</code>
----+
  
 +  * Detects drift by comparing the means of reference data and incoming data. If the percentage difference exceeds the specified `threshold`, drift is flagged.
 ===== Workflow ===== ===== Workflow =====
  
 1. **Define New and Reference Data**:   1. **Define New and Reference Data**:  
-   Collect incoming data for monitoring (`new_data`) and reference data from the model's training or expected distribution.+   Collect incoming data for monitoring (**new_data**) and reference data from the model's training or expected distribution.
  
 2. **Set Thresholds**:   2. **Set Thresholds**:  
-   Adjust the `thresholdparameter based on the model's sensitivity to drift.+   Adjust the **threshold** parameter based on the model's sensitivity to drift.
  
 3. **Call Drift Detection**:   3. **Call Drift Detection**:  
-   Use the `detect_drift()method to compare `new_dataand `reference_data`.+   Use the **detect_drift()** method to compare **new_data** and **reference_data**.
  
 4. **Interpret Results**:   4. **Interpret Results**:  
-   Examine the boolean return value and logging outputs to act upon drift detection.+   Examine the boolean return value and logging outputs to act upon drift detection.
  
 5. **Adapt Extensibility**:   5. **Adapt Extensibility**:  
-   Improve the monitoring system by integrating additional metrics, datasets, or advanced drift detection techniques in the framework. +   Improve the monitoring system by integrating additional metrics, datasets, or advanced drift detection techniques in the framework.
- +
---- +
 ===== Usage Examples ===== ===== Usage Examples =====
  
-Below are examples demonstrating practical and advanced applications of the `ModelDriftMonitoringclass. +Below are examples demonstrating practical and advanced applications of the **ModelDriftMonitoring** class.
- +
---- +
 ==== Example 1: Basic Drift Detection Example ==== ==== Example 1: Basic Drift Detection Example ====
- +<code> 
-```python+python
 from ai_model_drift_monitoring import ModelDriftMonitoring from ai_model_drift_monitoring import ModelDriftMonitoring
- +</code> 
-Define reference data (from model training) and new operational data+**Define reference data (from model training) and new operational data** 
 +<code>
 reference_data = [12.2, 11.8, 12.5, 12.1, 11.9] reference_data = [12.2, 11.8, 12.5, 12.1, 11.9]
 new_data = [14.0, 13.8, 14.2, 13.9, 14.1] new_data = [14.0, 13.8, 14.2, 13.9, 14.1]
  
-Initialize drift detection with a threshold of 10% drift+Initialize drift detection with a threshold of 10% drift** 
 has_drifted = ModelDriftMonitoring.detect_drift(new_data, reference_data, threshold=0.1) has_drifted = ModelDriftMonitoring.detect_drift(new_data, reference_data, threshold=0.1)
  
Line 121: Line 118:
 else: else:
     print("No significant model drift detected.")     print("No significant model drift detected.")
- +</code> 
-Output (example):+**Output (example):** 
 +<code>
 # WARNING:root:Model drift detected: 0.17 > 0.10 # WARNING:root:Model drift detected: 0.17 > 0.10
 # Model drift detected. # Model drift detected.
-```+</code>
  
 **Explanation**:   **Explanation**:  
-The system assesses the deviation between the `reference_data` and `new_data`.   +  * The system assesses the deviation between the `reference_data` and `new_data`.   
-Logs and flag alerts if the percentage drift exceeds the predefined threshold (0.1 or 10%). +  Logs and flag alerts if the percentage drift exceeds the predefined threshold (0.1 or 10%).
- +
---- +
 ==== Example 2: Handling Data Drift in Real-Time ==== ==== Example 2: Handling Data Drift in Real-Time ====
  
 This example demonstrates integrating drift detection in a live system. This example demonstrates integrating drift detection in a live system.
  
-```python+<code> 
 +python
 import random import random
 from ai_model_drift_monitoring import ModelDriftMonitoring from ai_model_drift_monitoring import ModelDriftMonitoring
Line 154: Line 150:
     if drift_detected:     if drift_detected:
         print(f"Alert: Drift detected in incoming data: {new_data}")         print(f"Alert: Drift detected in incoming data: {new_data}")
-```+</code>
  
 **Explanation**:   **Explanation**:  
-Integrates a simulated pipeline that generates live data.   +   Integrates a simulated pipeline that generates live data.   
-Detects potential deviations using `detect_drift()` in an iterative real-time loop. +   * Detects potential deviations using `detect_drift()` in an iterative real-time loop.
- +
---- +
 ==== Example 3: Advanced Threshold Customization ==== ==== Example 3: Advanced Threshold Customization ====
  
 Adapt thresholds dynamically based on business logic or external inputs. Adapt thresholds dynamically based on business logic or external inputs.
  
-```python+<code> 
 +python
 class CustomDriftMonitoring(ModelDriftMonitoring): class CustomDriftMonitoring(ModelDriftMonitoring):
     """     """
Line 185: Line 179:
         return self.detect_drift(new_data, reference_data, threshold)         return self.detect_drift(new_data, reference_data, threshold)
  
- +</code> 
-Usage+**Usage** 
 +<code>
 custom_monitor = CustomDriftMonitoring(default_threshold=0.1) custom_monitor = CustomDriftMonitoring(default_threshold=0.1)
 reference_data = [10.0, 10.2, 10.1, 10.3, 10.1] reference_data = [10.0, 10.2, 10.1, 10.3, 10.1]
Line 193: Line 188:
 alert = custom_monitor.detect_drift_with_custom_threshold(new_data, reference_data, condition="critical") alert = custom_monitor.detect_drift_with_custom_threshold(new_data, reference_data, condition="critical")
 print(f"Critical Condition Drift Detected: {alert}") print(f"Critical Condition Drift Detected: {alert}")
-```+</code>
  
 **Explanation**:   **Explanation**:  
-Dynamically adjusts drift thresholds based on the current operating conditions, such as critical alerts or routine monitoring. +   Dynamically adjusts drift thresholds based on the current operating conditions, such as critical alerts or routine monitoring.
- +
---- +
 ==== Example 4: Visualizing Drift ==== ==== Example 4: Visualizing Drift ====
  
 Use visualization to provide additional context to detected drift. Use visualization to provide additional context to detected drift.
  
-```python+<code> 
 +python
 import matplotlib.pyplot as plt import matplotlib.pyplot as plt
 from ai_model_drift_monitoring import ModelDriftMonitoring from ai_model_drift_monitoring import ModelDriftMonitoring
Line 222: Line 215:
     plt.legend()     plt.legend()
     plt.show()     plt.show()
-```+</code>
  
 **Explanation**:   **Explanation**:  
-Provides a visual representation of data distributions to verify drift and assess its impact. +   Provides a visual representation of data distributions to verify drift and assess its impact.
- +
---- +
 ===== Extensibility ===== ===== Extensibility =====
  
 1. **Incorporate Statistical Methods**:   1. **Incorporate Statistical Methods**:  
-   Extend the framework to use advanced statistical tests like Kolmogorov-Smirnov Test, Wasserstein Distance, or Chi-Square Test.+   Extend the framework to use advanced statistical tests like Kolmogorov-Smirnov Test, Wasserstein Distance, or Chi-Square Test.
  
 2. **Multi-Dimensional Drift Detection**:   2. **Multi-Dimensional Drift Detection**:  
-   Expand from a one-dimensional comparison to multi-dimensional feature space drift analysis.+   Expand from a one-dimensional comparison to multi-dimensional feature space drift analysis.
  
 3. **Logging Enhancements**:   3. **Logging Enhancements**:  
-   Add structured logging (e.g., JSON logs) for integration with monitoring and alerting systems like Grafana or ELK.+   Add structured logging (e.g., JSON logs) for integration with monitoring and alerting systems like Grafana or ELK.
  
 4. **Actionable Insights**:   4. **Actionable Insights**:  
-   Extend the alert system to trigger specific actions, such as retraining your model when drift is detected.+   Extend the alert system to trigger specific actions, such as retraining your model when drift is detected.
  
 5. **Monitoring Pipelines**:   5. **Monitoring Pipelines**:  
-   Integrate with data pipelines in tools like Apache Kafka or cloud platforms for large-scale drift monitoring. +   Integrate with data pipelines in tools like Apache Kafka or cloud platforms for large-scale drift monitoring.
- +
---- +
 ===== Best Practices ===== ===== Best Practices =====
  
-**Consistency in Data Collection**:   +**Consistency in Data Collection**:   
-  Ensure that both reference and incoming data follow the same preprocessing and scaling procedures+  Ensure that both reference and incoming data follow the same preprocessing and scaling procedures.
- +
-- **Dynamic Thresholding**:   +
-  Adjust thresholds flexibly for different use cases, such as critical systems or lenient applications. +
- +
-- **Frequent Evaluation**:   +
-  Perform regular drift checks to avoid sudden model deterioration.+
  
-**Visualization**:   +**Dynamic Thresholding**:   
-  Use visualization tools to complement automated drift detection alerts for better understanding.+  * Adjust thresholds flexibly for different use cases, such as critical systems or lenient applications.
  
-**Automation**:   +**Frequent Evaluation**:   
-  Automate retraining or data validation when persistent drift is detected.+  * Perform regular drift checks to avoid sudden model deterioration.
  
----+**Visualization**:   
 +  * Use visualization tools to complement automated drift detection alerts for better understanding.
  
 +**Automation**:  
 +  * Automate retraining or data validation when persistent drift is detected.
 ===== Conclusion ===== ===== Conclusion =====
  
ai_model_drift_monitoring.1748401976.txt.gz · Last modified: 2025/05/28 03:12 by eagleeyenebula