User Tools

Site Tools


ai_life_connection

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
ai_life_connection [2025/05/28 01:23] – [Example 1: Simple Heartbeat Analysis] eagleeyenebulaai_life_connection [2025/05/28 01:30] (current) – [Example 3: Visualizing Rhythm Data] eagleeyenebula
Line 135: Line 135:
 Modify the threshold for stability detection to analyze different datasets. Modify the threshold for stability detection to analyze different datasets.
  
-```python+<code> 
 +python
 class CustomLifeConnection(LifeConnection): class CustomLifeConnection(LifeConnection):
     """     """
Line 154: Line 155:
         }         }
  
- +</code> 
-Usage+**Usage** 
 +<code>
 data = [815, 820, 810, 807, 812] data = [815, 820, 810, 807, 812]
 custom_life = CustomLifeConnection(stability_threshold=15) custom_life = CustomLifeConnection(stability_threshold=15)
Line 161: Line 163:
  
 print(result) print(result)
-```+</code>
  
 **Explanation**:   **Explanation**:  
-Dynamically adjusts the variability threshold to accommodate different use-case requirements or datasets. +   Dynamically adjusts the variability threshold to accommodate different use-case requirements or datasets.
- +
----+
  
 ==== Example 3: Visualizing Rhythm Data ==== ==== Example 3: Visualizing Rhythm Data ====
Line 172: Line 172:
 Leverage matplotlib to visualize the rhythms and provide deeper insights. Leverage matplotlib to visualize the rhythms and provide deeper insights.
  
-```python+<code> 
 +python
 import matplotlib.pyplot as plt import matplotlib.pyplot as plt
 from ai_life_connection import LifeConnection from ai_life_connection import LifeConnection
- +</code> 
-Sample heartbeat intervals+**Sample heartbeat intervals** 
 +<code>
 data = [800, 810, 795, 803, 802] data = [800, 810, 795, 803, 802]
- +</code> 
-Analyze the data+**Analyze the data** 
 +<code>
 life_connector = LifeConnection() life_connector = LifeConnection()
 analysis = life_connector.read_heartbeat_pattern(data) analysis = life_connector.read_heartbeat_pattern(data)
Line 191: Line 194:
 plt.legend() plt.legend()
 plt.show() plt.show()
-``` 
  
 +</code>
 **Explanation**:   **Explanation**:  
-Provides a visual representation of the heartbeat pattern alongside the computed average rate to assist in better understanding. +    * Provides a visual representation of the heartbeat pattern alongside the computed average rate to assist in better understanding.
- +
---- +
 ==== Example 4: Extending to Respiratory Patterns ==== ==== Example 4: Extending to Respiratory Patterns ====
  
 Extend the system to process respiratory data (breathing rate intervals). Extend the system to process respiratory data (breathing rate intervals).
  
-```python+<code> 
 +python
 class RespiratoryLifeConnection(LifeConnection): class RespiratoryLifeConnection(LifeConnection):
     """     """
Line 218: Line 219:
             return "Unstable breathing cycles detected—possible respiratory distress."             return "Unstable breathing cycles detected—possible respiratory distress."
  
- +</code> 
-Usage+**Usage** 
 +<code>
 respiratory_data = [12, 13, 11, 12, 12]  # Breaths per minute intervals respiratory_data = [12, 13, 11, 12, 12]  # Breaths per minute intervals
 resp_connector = RespiratoryLifeConnection() resp_connector = RespiratoryLifeConnection()
 respiratory_insight = resp_connector.describe_respiratory_element(respiratory_data) respiratory_insight = resp_connector.describe_respiratory_element(respiratory_data)
- 
 print(respiratory_insight) print(respiratory_insight)
- +</code> 
-Output:+**Output:** 
 +<code>
 # This organism exhibits steady and balanced respiratory cycles. # This organism exhibits steady and balanced respiratory cycles.
-```+</code>
  
 **Explanation**:   **Explanation**:  
-Adapts the system from heartbeat analysis to monitor respiration, demonstrating flexibility for other physiological metrics. +    * Adapts the system from heartbeat analysis to monitor respiration, demonstrating flexibility for other physiological metrics.
- +
---- +
 ==== Example 5: Persistent Health Monitoring ==== ==== Example 5: Persistent Health Monitoring ====
  
 Store and monitor long-term analysis data using a persistent data structure. Store and monitor long-term analysis data using a persistent data structure.
  
-```python+<code> 
 +python
 class PersistentLifeConnection(LifeConnection): class PersistentLifeConnection(LifeConnection):
     """     """
Line 256: Line 256:
         return result         return result
  
- +</code> 
-Usage+**Usage** 
 +<code>
 data_streams = [ data_streams = [
     [800, 810, 795, 803, 802],     [800, 810, 795, 803, 802],
Line 269: Line 270:
  
 print(persistent_connector.history) print(persistent_connector.history)
-```+</code>
  
 **Explanation**:   **Explanation**:  
-Creates a monitoring framework to track health changes over time by logging multiple analyses. +    * Creates a monitoring framework to track health changes over time by logging multiple analyses.
- +
---- +
 ===== Best Practices ===== ===== Best Practices =====
  
 1. **Validate Input Data**:   1. **Validate Input Data**:  
-   Ensure biological data is pre-processed and validated before analysis.+     Ensure biological data is pre-processed and validated before analysis.
  
 2. **Tune Stability Thresholds**:   2. **Tune Stability Thresholds**:  
-   Adjust variability thresholds based on the physiological metric being analyzed.+     Adjust variability thresholds based on the physiological metric being analyzed.
  
 3. **Leverage Visualization**:   3. **Leverage Visualization**:  
-   Use tools like matplotlib for visualizing patterns to support human understanding.+     Use tools like matplotlib for visualizing patterns to support human understanding.
  
 4. **Extend for Variety**:   4. **Extend for Variety**:  
-   Adapt the system for analyzing other biological metrics, such as ECG or brainwave data.+     Adapt the system for analyzing other biological metrics, such as ECG or brainwave data.
  
 5. **Monitor Trends Over Time**:   5. **Monitor Trends Over Time**:  
-   Introduce historical logging to analyze trends and detect long-term abnormalities. +     Introduce historical logging to analyze trends and detect long-term abnormalities.
- +
---- +
 ===== Conclusion ===== ===== Conclusion =====
  
ai_life_connection.1748395425.txt.gz · Last modified: 2025/05/28 01:23 by eagleeyenebula