ai_interface_perdiction
Differences
This shows you the differences between two versions of the page.
| Both sides previous revisionPrevious revisionNext revision | Previous revision | ||
| ai_interface_perdiction [2025/05/27 20:12] – [Example 1: Basic Mock Prediction] eagleeyenebula | ai_interface_perdiction [2025/05/27 20:17] (current) – [Best Practices] eagleeyenebula | ||
|---|---|---|---|
| Line 128: | Line 128: | ||
| Extend the interface by incorporating an actual machine learning model, such as a scikit-learn or TensorFlow model. | Extend the interface by incorporating an actual machine learning model, such as a scikit-learn or TensorFlow model. | ||
| - | ```python | + | < |
| + | python | ||
| from sklearn.linear_model import LinearRegression | from sklearn.linear_model import LinearRegression | ||
| import numpy as np | import numpy as np | ||
| - | + | </ | |
| - | # Define a simple linear regression model and train it | + | **Define a simple linear regression model and train it** |
| + | < | ||
| model = LinearRegression() | model = LinearRegression() | ||
| X = np.array([[1], | X = np.array([[1], | ||
| y = np.array([2, | y = np.array([2, | ||
| model.fit(X, | model.fit(X, | ||
| - | + | </ | |
| - | # Integrate the model with the PredictionInterface | + | **Integrate the model with the PredictionInterface** |
| + | < | ||
| interface = PredictionInterface(model) | interface = PredictionInterface(model) | ||
| - | + | </ | |
| - | # Prediction input data | + | **Prediction input data** |
| + | < | ||
| input_data = np.array([[6], | input_data = np.array([[6], | ||
| - | + | </ | |
| - | # Perform prediction using the trained model | + | **Perform prediction using the trained model** |
| + | < | ||
| predictions = interface.handle_prediction_request(input_data) | predictions = interface.handle_prediction_request(input_data) | ||
| print(" | print(" | ||
| - | ``` | + | </ |
| **Explanation**: | **Explanation**: | ||
| - | - Replaces the placeholder logic with real predictions from a trained scikit-learn `LinearRegression` model. | + | |
| - | - Adapts for advanced scenarios with actual models. | + | |
| - | + | ||
| - | --- | + | |
| ==== Example 3: Adding Input Validation ==== | ==== Example 3: Adding Input Validation ==== | ||
| This example adds validation to ensure input data integrity. | This example adds validation to ensure input data integrity. | ||
| - | ```python | + | < |
| + | python | ||
| class ValidatingPredictionInterface(PredictionInterface): | class ValidatingPredictionInterface(PredictionInterface): | ||
| """ | """ | ||
| Line 173: | Line 176: | ||
| return super().handle_prediction_request(input_data) | return super().handle_prediction_request(input_data) | ||
| - | + | </ | |
| - | # Usage | + | **Usage** |
| + | < | ||
| interface = ValidatingPredictionInterface(None) | interface = ValidatingPredictionInterface(None) | ||
| Line 181: | Line 185: | ||
| except ValueError as e: | except ValueError as e: | ||
| print(e) | print(e) | ||
| - | ``` | + | </ |
| **Explanation**: | **Explanation**: | ||
| - | - Ensures only numeric data is passed to the prediction process, preventing invalid inputs. | + | |
| - | + | ||
| - | --- | + | |
| ==== Example 4: Batch Predictions with Logging ==== | ==== Example 4: Batch Predictions with Logging ==== | ||
| This example improves the interface by introducing batch processing. | This example improves the interface by introducing batch processing. | ||
| - | ```python | + | < |
| + | python | ||
| class BatchPredictionInterface(PredictionInterface): | class BatchPredictionInterface(PredictionInterface): | ||
| """ | """ | ||
| Line 209: | Line 211: | ||
| all_predictions.append(self.handle_prediction_request(batch)) | all_predictions.append(self.handle_prediction_request(batch)) | ||
| return all_predictions | return all_predictions | ||
| + | </ | ||
| - | + | **Usage** | |
| - | # Usage | + | < |
| interface = BatchPredictionInterface(None) | interface = BatchPredictionInterface(None) | ||
| batch_data = [[1, 2, 3], [4, 5, 6], [7, 8, 9]] | batch_data = [[1, 2, 3], [4, 5, 6], [7, 8, 9]] | ||
| - | + | </ | |
| - | # Perform batch predictions | + | **Perform batch predictions** |
| + | < | ||
| batch_results = interface.batch_predictions(batch_data) | batch_results = interface.batch_predictions(batch_data) | ||
| print(" | print(" | ||
| Line 223: | Line 227: | ||
| # INFO: | # INFO: | ||
| # INFO: | # INFO: | ||
| - | ``` | + | </ |
| **Explanation**: | **Explanation**: | ||
| - | - Designed for scenarios requiring predictions over multiple datasets in a single operation. | + | |
| - | + | ||
| - | --- | + | |
| ==== Example 5: Persistent Prediction Results ==== | ==== Example 5: Persistent Prediction Results ==== | ||
| Save prediction results to a file for further analysis. | Save prediction results to a file for further analysis. | ||
| - | ```python | + | < |
| + | python | ||
| import json | import json | ||
| Line 251: | Line 253: | ||
| json.dump(predictions, | json.dump(predictions, | ||
| logging.info(f" | logging.info(f" | ||
| + | </ | ||
| - | + | **Usage** | |
| - | # Usage | + | < |
| interface = PersistentPredictionInterface(None) | interface = PersistentPredictionInterface(None) | ||
| predictions = interface.handle_prediction_request([1, | predictions = interface.handle_prediction_request([1, | ||
| interface.save_predictions(predictions, | interface.save_predictions(predictions, | ||
| - | ``` | + | </ |
| **Explanation**: | **Explanation**: | ||
| - | - Ensures prediction results can be stored and loaded later by saving them in a JSON file. | + | |
| - | + | ||
| - | --- | + | |
| ===== Use Cases ===== | ===== Use Cases ===== | ||
| 1. **Real-Time Model Serving**: | 1. **Real-Time Model Serving**: | ||
| - | | + | * Create a prediction-serving pipeline for real-time applications (e.g., APIs). |
| 2. **Batch Prediction Systems**: | 2. **Batch Prediction Systems**: | ||
| - | | + | * Efficiently process batch inputs for large datasets. |
| 3. **Data Validation Before Inference**: | 3. **Data Validation Before Inference**: | ||
| - | | + | * Ensure input data meets pre-defined conditions (e.g., type checks or range validation). |
| 4. **Logging and Debugging Predictions**: | 4. **Logging and Debugging Predictions**: | ||
| - | | + | * Leverage integrated logging to identify issues during the prediction process. |
| 5. **Persistent Predictions**: | 5. **Persistent Predictions**: | ||
| - | Save results for offline analysis or inclusion in reporting pipelines. | + | * Save results for offline analysis or inclusion in reporting pipelines. |
| - | + | ||
| - | --- | + | |
| ===== Best Practices ===== | ===== Best Practices ===== | ||
| 1. **Validate Input Data**: | 1. **Validate Input Data**: | ||
| - | | + | * Always validate input data before feeding it to machine learning models. |
| 2. **Implement Error Handling**: | 2. **Implement Error Handling**: | ||
| - | | + | * Account for potential prediction errors or invalid inputs. |
| 3. **Optimize for Batch Processing**: | 3. **Optimize for Batch Processing**: | ||
| - | Use batch predictions to improve efficiency for applications involving large datasets. | + | * Use batch predictions to improve efficiency for applications involving large datasets. |
| 4. **Leverage Logging**: | 4. **Leverage Logging**: | ||
| - | | + | * Enable detailed logging for easier debugging and transparency in prediction outputs. |
| 5. **Integrate with Real Models**: | 5. **Integrate with Real Models**: | ||
| - | | + | * Replace mock logic with actual AI/ML models for robust production-ready systems. |
| - | + | ||
| - | --- | + | |
| ===== Conclusion ===== | ===== Conclusion ===== | ||
ai_interface_perdiction.1748376747.txt.gz · Last modified: 2025/05/27 20:12 by eagleeyenebula
