User Tools

Site Tools


ai_interface_perdiction

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
ai_interface_perdiction [2025/05/27 20:09] – [Key Features] eagleeyenebulaai_interface_perdiction [2025/05/27 20:17] (current) – [Best Practices] eagleeyenebula
Line 44: Line 44:
 ===== Class Overview ===== ===== Class Overview =====
  
-```python+<code> 
 +python
 import logging import logging
  
Line 71: Line 72:
         logging.info(f"Predictions: {predictions}")         logging.info(f"Predictions: {predictions}")
         return predictions         return predictions
-```+</code>
  
 **Core Attributes**: **Core Attributes**:
-- `model`: The AI model instance responsible for generating predictions.   +  * **model**: The AI model instance responsible for generating predictions.   
-- `handle_prediction_request(input_data)`: Method that handles input data, generates predictions, and logs activity. +  * **handle_prediction_request(input_data)**: Method that handles input data, generates predictions, and logs activity.
- +
---- +
 ===== Modular Workflow ===== ===== Modular Workflow =====
  
 1. **Initialize Interface with Model**:   1. **Initialize Interface with Model**:  
-   Pass any compatible machine learning model instance to the `PredictionInterface` during initialization.+   Pass any compatible machine learning model instance to the `PredictionInterface` during initialization.
  
 2. **Handle Prediction Requests**:   2. **Handle Prediction Requests**:  
-   Use the `handle_prediction_request()` method to process incoming data and retrieve prediction results.+   Use the `handle_prediction_request()` method to process incoming data and retrieve prediction results.
  
 3. **Extend for Functionality**:   3. **Extend for Functionality**:  
-   Add input pre-processing, output post-processing, or advanced error handling as required. +   Add input pre-processing, output post-processing, or advanced error handling as required.
- +
---- +
 ===== Usage Examples ===== ===== Usage Examples =====
  
 Here are practical and advanced examples that demonstrate how to use the **PredictionInterface** class for real-world machine learning applications. Here are practical and advanced examples that demonstrate how to use the **PredictionInterface** class for real-world machine learning applications.
- 
---- 
- 
 ==== Example 1: Basic Mock Prediction ==== ==== Example 1: Basic Mock Prediction ====
  
 This example demonstrates using the `PredictionInterface` with placeholder logic for mock prediction. This example demonstrates using the `PredictionInterface` with placeholder logic for mock prediction.
  
-```python+<code> 
 +python
 from ai_interface_prediction import PredictionInterface from ai_interface_prediction import PredictionInterface
- +</code> 
-Mock model (placeholder for an actual ML model)+**Mock model (placeholder for an actual ML model)** 
 +<code>
 mock_model = None mock_model = None
- +</code> 
-Initialize the PredictionInterface+**Initialize the PredictionInterface** 
 +<code>
 interface = PredictionInterface(mock_model) interface = PredictionInterface(mock_model)
- +</code> 
-Input data for prediction+**Input data for prediction** 
 +<code>
 input_data = [1, 2, 3, 4, 5] input_data = [1, 2, 3, 4, 5]
- +</code> 
-Perform prediction+**Perform prediction** 
 +<code>
 predictions = interface.handle_prediction_request(input_data) predictions = interface.handle_prediction_request(input_data)
 print("Predictions:", predictions) print("Predictions:", predictions)
Line 122: Line 119:
 # INFO:root:Predictions: [2, 4, 6, 8, 10] # INFO:root:Predictions: [2, 4, 6, 8, 10]
 # Predictions: [2, 4, 6, 8, 10] # Predictions: [2, 4, 6, 8, 10]
-```+</code>
  
 **Explanation**:   **Explanation**:  
-Uses the mock prediction logic (`x * 2`) as a placeholder for real AI model predictions. +   Uses the mock prediction logic (`x * 2`) as a placeholder for real AI model predictions. 
-Logs the prediction process for traceability. +   * Logs the prediction process for traceability.
- +
---- +
 ==== Example 2: Integrating with a Pre-Trained Model ==== ==== Example 2: Integrating with a Pre-Trained Model ====
  
 Extend the interface by incorporating an actual machine learning model, such as a scikit-learn or TensorFlow model. Extend the interface by incorporating an actual machine learning model, such as a scikit-learn or TensorFlow model.
  
-```python+<code> 
 +python
 from sklearn.linear_model import LinearRegression from sklearn.linear_model import LinearRegression
 import numpy as np import numpy as np
- +</code> 
-Define a simple linear regression model and train it+**Define a simple linear regression model and train it** 
 +<code>
 model = LinearRegression() model = LinearRegression()
 X = np.array([[1], [2], [3], [4], [5]])  # Features X = np.array([[1], [2], [3], [4], [5]])  # Features
 y = np.array([2, 4, 6, 8, 10])         # Target values y = np.array([2, 4, 6, 8, 10])         # Target values
 model.fit(X, y) model.fit(X, y)
- +</code> 
-Integrate the model with the PredictionInterface+**Integrate the model with the PredictionInterface** 
 +<code>
 interface = PredictionInterface(model) interface = PredictionInterface(model)
- +</code> 
-Prediction input data+**Prediction input data** 
 +<code>
 input_data = np.array([[6], [7], [8]]) input_data = np.array([[6], [7], [8]])
- +</code> 
-Perform prediction using the trained model+**Perform prediction using the trained model** 
 +<code>
 predictions = interface.handle_prediction_request(input_data) predictions = interface.handle_prediction_request(input_data)
 print("Predictions:", predictions) print("Predictions:", predictions)
-```+</code>
  
 **Explanation**: **Explanation**:
-Replaces the placeholder logic with real predictions from a trained scikit-learn `LinearRegression` model. +   Replaces the placeholder logic with real predictions from a trained scikit-learn `LinearRegression` model. 
-Adapts for advanced scenarios with actual models. +  Adapts for advanced scenarios with actual models.
- +
---- +
 ==== Example 3: Adding Input Validation ==== ==== Example 3: Adding Input Validation ====
  
 This example adds validation to ensure input data integrity. This example adds validation to ensure input data integrity.
  
-```python+<code> 
 +python
 class ValidatingPredictionInterface(PredictionInterface): class ValidatingPredictionInterface(PredictionInterface):
     """     """
Line 179: Line 176:
         return super().handle_prediction_request(input_data)         return super().handle_prediction_request(input_data)
  
- +</code> 
-Usage+**Usage** 
 +<code>
 interface = ValidatingPredictionInterface(None) interface = ValidatingPredictionInterface(None)
  
Line 187: Line 185:
 except ValueError as e: except ValueError as e:
     print(e)  # Output: Input data must be a list of numeric values.     print(e)  # Output: Input data must be a list of numeric values.
-```+</code>
  
 **Explanation**: **Explanation**:
-Ensures only numeric data is passed to the prediction process, preventing invalid inputs. +   Ensures only numeric data is passed to the prediction process, preventing invalid inputs.
- +
---- +
 ==== Example 4: Batch Predictions with Logging ==== ==== Example 4: Batch Predictions with Logging ====
  
 This example improves the interface by introducing batch processing. This example improves the interface by introducing batch processing.
  
-```python+<code> 
 +python
 class BatchPredictionInterface(PredictionInterface): class BatchPredictionInterface(PredictionInterface):
     """     """
Line 215: Line 211:
             all_predictions.append(self.handle_prediction_request(batch))             all_predictions.append(self.handle_prediction_request(batch))
         return all_predictions         return all_predictions
 +</code>
  
- +**Usage** 
-Usage+<code>
 interface = BatchPredictionInterface(None) interface = BatchPredictionInterface(None)
 batch_data = [[1, 2, 3], [4, 5, 6], [7, 8, 9]] batch_data = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
- +</code> 
-Perform batch predictions+**Perform batch predictions** 
 +<code>
 batch_results = interface.batch_predictions(batch_data) batch_results = interface.batch_predictions(batch_data)
 print("Batch Predictions:", batch_results) print("Batch Predictions:", batch_results)
Line 229: Line 227:
 # INFO:root:Processing batch: [4, 5, 6] # INFO:root:Processing batch: [4, 5, 6]
 # INFO:root:Processing batch: [7, 8, 9] # INFO:root:Processing batch: [7, 8, 9]
-```+</code>
  
 **Explanation**: **Explanation**:
-Designed for scenarios requiring predictions over multiple datasets in a single operation. +   Designed for scenarios requiring predictions over multiple datasets in a single operation.
- +
---- +
 ==== Example 5: Persistent Prediction Results ==== ==== Example 5: Persistent Prediction Results ====
  
 Save prediction results to a file for further analysis. Save prediction results to a file for further analysis.
  
-```python+<code> 
 +python
 import json import json
  
Line 257: Line 253:
             json.dump(predictions, file)             json.dump(predictions, file)
         logging.info(f"Predictions saved to {filename}.")         logging.info(f"Predictions saved to {filename}.")
 +</code>
  
- +**Usage** 
-Usage+<code>
 interface = PersistentPredictionInterface(None) interface = PersistentPredictionInterface(None)
 predictions = interface.handle_prediction_request([1, 2, 3]) predictions = interface.handle_prediction_request([1, 2, 3])
 interface.save_predictions(predictions, "predictions.json") interface.save_predictions(predictions, "predictions.json")
-```+</code>
  
 **Explanation**: **Explanation**:
-Ensures prediction results can be stored and loaded later by saving them in a JSON file. +   Ensures prediction results can be stored and loaded later by saving them in a JSON file.
- +
---- +
 ===== Use Cases ===== ===== Use Cases =====
  
 1. **Real-Time Model Serving**:   1. **Real-Time Model Serving**:  
-   Create a prediction-serving pipeline for real-time applications (e.g., APIs).+   Create a prediction-serving pipeline for real-time applications (e.g., APIs).
  
 2. **Batch Prediction Systems**:   2. **Batch Prediction Systems**:  
-   Efficiently process batch inputs for large datasets.+   Efficiently process batch inputs for large datasets.
  
 3. **Data Validation Before Inference**:   3. **Data Validation Before Inference**:  
-   Ensure input data meets pre-defined conditions (e.g., type checks or range validation).+   Ensure input data meets pre-defined conditions (e.g., type checks or range validation).
  
 4. **Logging and Debugging Predictions**:   4. **Logging and Debugging Predictions**:  
-   Leverage integrated logging to identify issues during the prediction process.+   Leverage integrated logging to identify issues during the prediction process.
  
 5. **Persistent Predictions**:   5. **Persistent Predictions**:  
-   Save results for offline analysis or inclusion in reporting pipelines. +   Save results for offline analysis or inclusion in reporting pipelines.
- +
---- +
 ===== Best Practices ===== ===== Best Practices =====
  
 1. **Validate Input Data**:   1. **Validate Input Data**:  
-   Always validate input data before feeding it to machine learning models.+   Always validate input data before feeding it to machine learning models.
  
 2. **Implement Error Handling**:   2. **Implement Error Handling**:  
-   Account for potential prediction errors or invalid inputs.+   Account for potential prediction errors or invalid inputs.
  
 3. **Optimize for Batch Processing**:   3. **Optimize for Batch Processing**:  
-   Use batch predictions to improve efficiency for applications involving large datasets.+   Use batch predictions to improve efficiency for applications involving large datasets.
  
 4. **Leverage Logging**:   4. **Leverage Logging**:  
-   Enable detailed logging for easier debugging and transparency in prediction outputs.+   Enable detailed logging for easier debugging and transparency in prediction outputs.
  
 5. **Integrate with Real Models**:   5. **Integrate with Real Models**:  
-   Replace mock logic with actual AI/ML models for robust production-ready systems. +   Replace mock logic with actual AI/ML models for robust production-ready systems.
- +
---- +
 ===== Conclusion ===== ===== Conclusion =====
  
ai_interface_perdiction.1748376543.txt.gz · Last modified: 2025/05/27 20:09 by eagleeyenebula