User Tools

Site Tools


ai_insert_training_data

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
ai_insert_training_data [2025/05/27 19:46] – [Modular Workflow] eagleeyenebulaai_insert_training_data [2025/05/27 19:56] (current) – [AI Insert Training Data] eagleeyenebula
Line 1: Line 1:
 ====== AI Insert Training Data ====== ====== AI Insert Training Data ======
-**[[https://autobotsolutions.com/god/templates/index.1.html|More Developers Docs]]**:+**[[https://autobotsolutions.com/god/templates/index.1.html|More Developers Docs]]**:
 The TrainingDataInsert class facilitates adding new data into existing training datasets seamlessly. It serves as a foundational tool for managing, updating, and extending datasets in machine learning pipelines. The class ensures logging and modularity for integration into larger AI systems. The TrainingDataInsert class facilitates adding new data into existing training datasets seamlessly. It serves as a foundational tool for managing, updating, and extending datasets in machine learning pipelines. The class ensures logging and modularity for integration into larger AI systems.
  
Line 79: Line 79:
  
 Below are several practical examples that demonstrate how to use and extend the **TrainingDataInsert** class for real-world applications. Below are several practical examples that demonstrate how to use and extend the **TrainingDataInsert** class for real-world applications.
- 
---- 
- 
 ==== Example 1: Basic Data Injection ==== ==== Example 1: Basic Data Injection ====
  
 This example demonstrates the simplest data injection using `add_data()`. This example demonstrates the simplest data injection using `add_data()`.
  
-```python+<code> 
 +python
 from ai_insert_training_data import TrainingDataInsert from ai_insert_training_data import TrainingDataInsert
- +</code> 
-Existing and new data+**Existing and new data** 
 +<code>
 existing_dataset = ["data_point_1", "data_point_2", "data_point_3"] existing_dataset = ["data_point_1", "data_point_2", "data_point_3"]
 new_data = ["data_point_4", "data_point_5"] new_data = ["data_point_4", "data_point_5"]
- +</code> 
-Add new data to the dataset+**Add new data to the dataset** 
 +<code>
 updated_dataset = TrainingDataInsert.add_data(new_data, existing_dataset) updated_dataset = TrainingDataInsert.add_data(new_data, existing_dataset)
- 
 print("Updated Dataset:", updated_dataset) print("Updated Dataset:", updated_dataset)
- +</code> 
-Output: +**Output:** 
-Updated Dataset: ['data_point_1', 'data_point_2', 'data_point_3', 'data_point_4', 'data_point_5'+<code> 
-```+Updated Dataset: ['data_point_1', 'data_point_2', 'data_point_3', 'data_point_4', 'data_point_5'
 +</code>
  
 **Explanation**: **Explanation**:
-The `add_data()` method appends `new_data` to `existing_dataset`, returning the updated dataset. +   The `add_data()` method appends `new_data` to `existing_dataset`, returning the updated dataset.
- +
---- +
 ==== Example 2: Logging Integration ==== ==== Example 2: Logging Integration ====
  
 This example highlights how logging ensures transparency in data insertion. This example highlights how logging ensures transparency in data insertion.
  
-```python+<code> 
 +python
 import logging import logging
 from ai_insert_training_data import TrainingDataInsert from ai_insert_training_data import TrainingDataInsert
- +</code> 
-Enable logging+**Enable logging** 
 +<code>
 logging.basicConfig(level=logging.INFO) logging.basicConfig(level=logging.INFO)
- +</code> 
-Datasets+**Datasets** 
 +<code>
 existing_data = [1, 2, 3] existing_data = [1, 2, 3]
 new_data = [4, 5, 6] new_data = [4, 5, 6]
- +</code> 
-Add new data while reviewing logging information in real-time+**Add new data while reviewing logging information in real-time** 
 +<code>
 TrainingDataInsert.add_data(new_data, existing_data) TrainingDataInsert.add_data(new_data, existing_data)
  
Line 128: Line 129:
 # INFO:root:Adding new data to the existing training dataset... # INFO:root:Adding new data to the existing training dataset...
 # INFO:root:New training data added successfully. # INFO:root:New training data added successfully.
-```+</code>
  
 **Explanation**: **Explanation**:
-Logs are automatically generated to indicate when data insertion starts and successfully completes. +   Logs are automatically generated to indicate when data insertion starts and successfully completes.
- +
---- +
 ==== Example 3: Extension - Validation of Data ==== ==== Example 3: Extension - Validation of Data ====
  
 This example expands the functionality by adding validation to ensure data integrity. This example expands the functionality by adding validation to ensure data integrity.
  
-```python+<code> 
 +python
 class ValidatingTrainingDataInsert(TrainingDataInsert): class ValidatingTrainingDataInsert(TrainingDataInsert):
     """     """
Line 159: Line 158:
         logging.info("Validation successful. Proceeding with data insertion.")         logging.info("Validation successful. Proceeding with data insertion.")
         return TrainingDataInsert.add_data(new_data, existing_data)         return TrainingDataInsert.add_data(new_data, existing_data)
 +</code>
  
- +**Example validation function** 
-Example validation function+<code>
 def validate_data(data_point): def validate_data(data_point):
     return isinstance(data_point, int) and data_point > 0  # Only positive integers allowed     return isinstance(data_point, int) and data_point > 0  # Only positive integers allowed
  
- +</code> 
-Example Usage+**Example Usage** 
 +<code>
 existing_set = [10, 20, 30] existing_set = [10, 20, 30]
 new_set = [40, 50, -10]  # Invalid data included new_set = [40, 50, -10]  # Invalid data included
Line 173: Line 174:
 except ValueError as e: except ValueError as e:
     print(e)  # Output: Validation failed for some data points.     print(e)  # Output: Validation failed for some data points.
-```+</code>
  
 **Explanation**: **Explanation**:
-The validation logic ensures only positive integer data points are added. +  * The validation logic ensures only positive integer data points are added. 
-Invalid data triggers exceptions, preserving dataset integrity. +  Invalid data triggers exceptions, preserving dataset integrity.
- +
---- +
 ==== Example 4: Extension - Avoiding Duplicate Data ==== ==== Example 4: Extension - Avoiding Duplicate Data ====
  
 This example prevents duplication in the updated dataset. This example prevents duplication in the updated dataset.
  
-```python+<code> 
 +python
 class UniqueTrainingDataInsert(TrainingDataInsert): class UniqueTrainingDataInsert(TrainingDataInsert):
     """     """
Line 202: Line 201:
         return TrainingDataInsert.add_data(unique_new_data, existing_data)         return TrainingDataInsert.add_data(unique_new_data, existing_data)
  
- +</code> 
-Example+**Example** 
 +<code>
 existing_dataset = ["A", "B", "C"] existing_dataset = ["A", "B", "C"]
 new_dataset = ["B", "C", "D", "E"] new_dataset = ["B", "C", "D", "E"]
- +</code> 
-Add unique data only+**Add unique data only** 
 +<code>
 updated_dataset = UniqueTrainingDataInsert.add_unique_data(new_dataset, existing_dataset) updated_dataset = UniqueTrainingDataInsert.add_unique_data(new_dataset, existing_dataset)
- 
 print("Unique Updated Dataset:", updated_dataset) print("Unique Updated Dataset:", updated_dataset)
 +</code>
  
-Output:+**Output:** 
 +<code>
 # Unique Updated Dataset: ['A', 'B', 'C', 'D', 'E'] # Unique Updated Dataset: ['A', 'B', 'C', 'D', 'E']
-```+</code>
  
 **Explanation**: **Explanation**:
-Ensures no duplicate data points are added to the dataset. +   Ensures no duplicate data points are added to the dataset.
- +
---- +
 ==== Example 5: Persistent Dataset Updates ==== ==== Example 5: Persistent Dataset Updates ====
  
 This example saves the updated dataset for future use or offline storage. This example saves the updated dataset for future use or offline storage.
  
-```python+<code> 
 +python
 import json import json
  
Line 254: Line 254:
             return json.load(file)             return json.load(file)
  
 +</code>
  
-Example Usage+**Example Usage** 
 +<code>
 dataset = ["X", "Y", "Z"] dataset = ["X", "Y", "Z"]
 PersistentDataInsert.save_dataset(dataset, "training_data.json") PersistentDataInsert.save_dataset(dataset, "training_data.json")
- +</code> 
-Load and verify+**Load and verify** 
 +<code>
 loaded_data = PersistentDataInsert.load_dataset("training_data.json") loaded_data = PersistentDataInsert.load_dataset("training_data.json")
 print("Loaded Dataset:", loaded_data) print("Loaded Dataset:", loaded_data)
Line 266: Line 269:
 # INFO:root:Dataset saved to training_data.json. # INFO:root:Dataset saved to training_data.json.
 # Loaded Dataset: ['X', 'Y', 'Z'] # Loaded Dataset: ['X', 'Y', 'Z']
-```+</code>
  
 **Explanation**: **Explanation**:
-Allows datasets to be saved and retrieved for persistent storage and long-term use. +   Allows datasets to be saved and retrieved for persistent storage and long-term use.
- +
---- +
 ===== Use Cases ===== ===== Use Cases =====
  
 1. **Incremental Data Updates for ML Training**:   1. **Incremental Data Updates for ML Training**:  
-   Append data during active training to improve accuracy and adaptability.+   Append data during active training to improve accuracy and adaptability.
  
 2. **Dynamic Data Pipelines**:   2. **Dynamic Data Pipelines**:  
-   Use logging and insertion to build real-time data pipelines that grow dynamically based on user input or live feedback.+   Use logging and insertion to build real-time data pipelines that grow dynamically based on user input or live feedback.
  
 3. **Data Validation and Cleanup**:   3. **Data Validation and Cleanup**:  
-   Integrate validation or deduplication logic to maintain high-quality datasets while scaling.+   Integrate validation or deduplication logic to maintain high-quality datasets while scaling.
  
 4. **Persistent Dataset Management**:   4. **Persistent Dataset Management**:  
-   Enable training workflows to store and retrieve datasets across sessions.+   Enable training workflows to store and retrieve datasets across sessions.
  
 5. **Integration with Pre-Processing Frameworks**:   5. **Integration with Pre-Processing Frameworks**:  
-   Combine with tools for data formatting or augmentation prior to ML workflows. +   Combine with tools for data formatting or augmentation prior to ML workflows.
- +
---- +
 ===== Best Practices ===== ===== Best Practices =====
  
 1. **Validate New Data**:   1. **Validate New Data**:  
-   Always validate and sanitize input data before appending it to your datasets.+   Always validate and sanitize input data before appending it to your datasets.
  
 2. **Monitor Logs**:   2. **Monitor Logs**:  
-   Enable logging to debug and audit data injection processes effectively.+   Enable logging to debug and audit data injection processes effectively.
  
 3. **Avoid Duplicates**:   3. **Avoid Duplicates**:  
-   Ensure no redundant data is added to the training set.+   Ensure no redundant data is added to the training set.
  
 4. **Persist Critical Datasets**:   4. **Persist Critical Datasets**:  
-   Save updates to datasets regularly to prevent loss during crashes or interruptions.+   Save updates to datasets regularly to prevent loss during crashes or interruptions.
  
 5. **Scalable Design**:   5. **Scalable Design**:  
-   Extend or combine `TrainingDataInsert` with larger ML pipeline components for end-to-end coverage.+   Extend or combine `TrainingDataInsert` with larger ML pipeline components for end-to-end coverage. 
 +===== Conclusion =====
  
----+The **TrainingDataInsert** class offers a lightweight and modular solution for managing and updating training datasets. With extensibility options such as validation, deduplication, and persistence, it aligns with scalable machine learning workflows. Its transparent design and logging feedback make it a robust tool for real-world AI applications.
  
-===== Conclusion =====+Built to accommodate both batch and incremental data updates, the class simplifies the process of maintaining dynamic datasets in production environments. Developers can define pre-processing hooks, enforce schema consistency, and apply intelligent filtering to ensure only high-quality data enters the pipeline. This makes it particularly effective in contexts where data quality and traceability are critical.
  
-The **TrainingDataInsert** class offers a lightweight and modular solution for managing and updating training datasets. With extensibility options such as validationdeduplicationand persistence, it aligns with scalable machine learning workflows. Its transparent design and logging feedback make it a robust tool for real-world AI applications.+Furthermoreits integration-ready structure supports embedding into automated MLops pipelinesactive learning frameworks, and real-time data collection systems. Whether used for refining large-scale models, bootstrapping new experiments, or updating personalized AI agents, the TrainingDataInsert class provides the foundation for continuous, clean, and efficient data evolution in intelligent systems.
ai_insert_training_data.1748375217.txt.gz · Last modified: 2025/05/27 19:46 by eagleeyenebula