User Tools

Site Tools


ai_explainability_manager

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
ai_explainability_manager [2025/05/27 01:17] – [Best Practices] eagleeyenebulaai_explainability_manager [2025/05/27 01:24] (current) – [Class Overview] eagleeyenebula
Line 1: Line 1:
 ====== AI Explainability Manager ====== ====== AI Explainability Manager ======
 **[[https://autobotsolutions.com/god/templates/index.1.html|More Developers Docs]]**: **[[https://autobotsolutions.com/god/templates/index.1.html|More Developers Docs]]**:
-The **AI Explainability Manager System** leverages **SHAP** (SHapley Additive exPlanations) to provide detailed insights into machine learning model predictions. By calculating and visualizing **SHAP values**, this system enables practitioners to understand the contribution of each input feature to the prediction outcome, enhancing model transparency and aiding in debugging or stakeholder trust.+The **AI Explainability Manager System** leverages **SHAP** (**SHapley Additive exPlanations**) to provide detailed insights into machine learning model predictions. By calculating and visualizing **SHAP values**, this system enables practitioners to understand the contribution of each input feature to the prediction outcome, enhancing model transparency and aiding in debugging or stakeholder trust.
  
 {{youtube>1ENdR5Qq4Q4?large}} {{youtube>1ENdR5Qq4Q4?large}}
Line 74: Line 74:
      
 * **Outputs**: * **Outputs**:
-  * A **SHAP** summary plot visualizing the feature importance for the given `input_data`.+  * A **SHAP** summary plot visualizing the feature importance for the given **input_data**.
 ===== Usage Examples ===== ===== Usage Examples =====
  
Line 110: Line 110:
 </code> </code>
 **Explanation**: **Explanation**:
-* The **ExplainabilityManager** uses the trained Random Forest model and a representative sample of training data (`X`) to calculate SHAP values. +  * The **ExplainabilityManager** uses the trained Random Forest model and a representative sample of training data (`**X**`) to calculate **SHAP** values. 
-* It visualizes a **SHAP** **summary plot**, showing how each feature contributes to the prediction for **input_data**.+  * It visualizes a **SHAP** **summary plot**, showing how each feature contributes to the prediction for **input_data**.
 ==== Example 2: Explaining Multiple Predictions ==== ==== Example 2: Explaining Multiple Predictions ====
  
ai_explainability_manager.1748308641.txt.gz · Last modified: 2025/05/27 01:17 by eagleeyenebula