ai_edge_case_handling
Differences
This shows you the differences between two versions of the page.
| Both sides previous revisionPrevious revisionNext revision | Previous revision | ||
| ai_edge_case_handling [2025/05/26 15:34] – [Example 1: Validating a Data Source] eagleeyenebula | ai_edge_case_handling [2025/05/26 15:37] (current) – [Best Practices] eagleeyenebula | ||
|---|---|---|---|
| Line 124: | Line 124: | ||
| ==== Example 2: Handling Missing Values with Mean Strategy ==== | ==== Example 2: Handling Missing Values with Mean Strategy ==== | ||
| - | The `handle_missing_values()` method allows you to fill missing values in a dataset using the mean of existing values. | + | The **handle_missing_values()** method allows you to fill missing values in a dataset using the mean of existing values. |
| - | ```python | + | < |
| - | # Sample data with missing " | + | python |
| + | </ | ||
| + | **Sample data with missing " | ||
| + | < | ||
| data = [ | data = [ | ||
| {" | {" | ||
| Line 133: | Line 136: | ||
| {" | {" | ||
| ] | ] | ||
| - | + | </ | |
| - | # Handle missing values with the " | + | **Handle missing values with the " |
| + | < | ||
| cleaned_data = EdgeCaseHandler.handle_missing_values(data, | cleaned_data = EdgeCaseHandler.handle_missing_values(data, | ||
| print(f" | print(f" | ||
| - | ``` | + | </ |
| **Logs & Output:** | **Logs & Output:** | ||
| - | |||
| - | --- | ||
| ==== Example 3: Removing Records with Missing Values ==== | ==== Example 3: Removing Records with Missing Values ==== | ||
| - | Using the `remove` strategy, you can eliminate entries that contain missing values. | + | Using the **remove** strategy, you can eliminate entries that contain missing values. |
| - | ```python | + | < |
| + | python | ||
| # Handle missing values by removing incomplete records | # Handle missing values by removing incomplete records | ||
| cleaned_data = EdgeCaseHandler.handle_missing_values(data, | cleaned_data = EdgeCaseHandler.handle_missing_values(data, | ||
| print(f" | print(f" | ||
| - | ``` | + | </ |
| **Logs & Output:** | **Logs & Output:** | ||
| - | |||
| - | --- | ||
| ==== Example 4: Adding Custom Strategies ==== | ==== Example 4: Adding Custom Strategies ==== | ||
| - | Extend the `EdgeCaseHandler` class to define custom strategies for handling missing values. | + | Extend the **EdgeCaseHandler** class to define custom strategies for handling missing values. |
| - | ```python | + | < |
| + | python | ||
| class CustomEdgeCaseHandler(EdgeCaseHandler): | class CustomEdgeCaseHandler(EdgeCaseHandler): | ||
| @staticmethod | @staticmethod | ||
| Line 184: | Line 185: | ||
| print(f" | print(f" | ||
| - | ``` | + | </ |
| **Logs & Output:** | **Logs & Output:** | ||
| - | |||
| - | |||
| - | --- | ||
| - | |||
| ===== Use Cases ===== | ===== Use Cases ===== | ||
| 1. **Data Validation Pipelines**: | 1. **Data Validation Pipelines**: | ||
| - | - Ensure data pipelines are robust to file-system errors, missing files, and unavailable data sources. | + | * Ensure data pipelines are robust to file-system errors, missing files, and unavailable data sources. |
| 2. **Preprocessing Missing Features**: | 2. **Preprocessing Missing Features**: | ||
| - | - Handle missing or incomplete feature values during feature engineering for machine learning models. | + | * Handle missing or incomplete feature values during feature engineering for machine learning models. |
| 3. **Data Integrity Debugging**: | 3. **Data Integrity Debugging**: | ||
| - | - Use extensive logging to identify problematic records or strategies causing anomalies in processing. | + | * Use extensive logging to identify problematic records or strategies causing anomalies in processing. |
| 4. **Custom Cleaning Pipelines**: | 4. **Custom Cleaning Pipelines**: | ||
| - | - Extend the module with domain-specific strategies, such as interpolation or external API lookups, to handle missing information. | + | * Extend the module with domain-specific strategies, such as interpolation or external API lookups, to handle missing information. |
| - | + | ||
| - | --- | + | |
| ===== Best Practices ===== | ===== Best Practices ===== | ||
| 1. **Validate Early**: | 1. **Validate Early**: | ||
| - | - Always validate data sources at the start of your pipeline to avoid unnecessary runtime errors. | + | * Always validate data sources at the start of your pipeline to avoid unnecessary runtime errors. |
| 2. **Choose Appropriate Strategies**: | 2. **Choose Appropriate Strategies**: | ||
| - | - Select missing value handling strategies based on the nature of your data and downstream requirements. | + | * Select missing value handling strategies based on the nature of your data and downstream requirements. |
| 3. **Log Everything**: | 3. **Log Everything**: | ||
| - | - Use logging to track all edge case handling actions for accountability and debugging. | + | * Use logging to track all edge case handling actions for accountability and debugging. |
| 4. **Modular Extensions**: | 4. **Modular Extensions**: | ||
| - | - Extend methods to handle unique edge case scenarios tailored to your domain or application. | + | * Extend methods to handle unique edge case scenarios tailored to your domain or application. |
| - | + | ||
| - | --- | + | |
| ===== Conclusion ===== | ===== Conclusion ===== | ||
ai_edge_case_handling.1748273685.txt.gz · Last modified: 2025/05/26 15:34 by eagleeyenebula
