User Tools

Site Tools


ai_disaster_recovery

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
ai_disaster_recovery [2025/05/26 14:41] – [Core Components] eagleeyenebulaai_disaster_recovery [2025/05/26 14:44] (current) – [Best Practices] eagleeyenebula
Line 54: Line 54:
    * Allows the pipeline to resume execution from the last known good state.    * Allows the pipeline to resume execution from the last known good state.
  
-3. **Checkpoints Store (**self.checkpoints**)**:+3. **Checkpoints Store (self.checkpoints)**:
    * Maintains the in-memory storage for all pipeline checkpoints.    * Maintains the in-memory storage for all pipeline checkpoints.
    * Key: **step_name** (uniquely identifies the pipeline step).    * Key: **step_name** (uniquely identifies the pipeline step).
Line 131: Line 131:
 In scenarios requiring persistent storage of checkpoints, the module can be extended with custom serialization. Here’s how to save checkpoints to disk: In scenarios requiring persistent storage of checkpoints, the module can be extended with custom serialization. Here’s how to save checkpoints to disk:
  
-```python+<code> 
 +python
 import pickle import pickle
 from ai_disaster_recovery import DisasterRecovery from ai_disaster_recovery import DisasterRecovery
Line 156: Line 157:
             logging.warning(f"Checkpoint file not found for step: {step_name}")             logging.warning(f"Checkpoint file not found for step: {step_name}")
             return None             return None
- +<code> 
-# Usage+**Usage** 
 +<code>
 persistent_recovery = PersistentDisasterRecovery() persistent_recovery = PersistentDisasterRecovery()
- +</code> 
-# Save and rollback with disk persistence+**Save and rollback with disk persistence** 
 +<code>
 persistent_recovery.save_checkpoint("step_3", {"data": [7, 8, 9]}) persistent_recovery.save_checkpoint("step_3", {"data": [7, 8, 9]})
 restored_data = persistent_recovery.rollback_to_checkpoint("step_3") restored_data = persistent_recovery.rollback_to_checkpoint("step_3")
 print(f"Restored data: {restored_data}") print(f"Restored data: {restored_data}")
-```+</code>
  
 **Expected Output:** **Expected Output:**
- 
- 
---- 
- 
 ===== Use Cases ===== ===== Use Cases =====
  
 1. **AI Model Training Pipelines**: 1. **AI Model Training Pipelines**:
-   Save model state after every training epoch for fault recovery.+   Save model state after every training epoch for fault recovery.
  
 2. **Data Processing Pipelines**: 2. **Data Processing Pipelines**:
-   Save intermediate transformation results to prevent reprocessing from scratch in the event of failure.+   Save intermediate transformation results to prevent reprocessing from scratch in the event of failure.
  
 3. **Workflow Management Systems**: 3. **Workflow Management Systems**:
-   Use checkpoints to incrementally save the state of a multi-step workflow.+   Use checkpoints to incrementally save the state of a multi-step workflow.
  
 4. **Debugging Complex Errors**: 4. **Debugging Complex Errors**:
-   Rollback to a known-good state for error analysis and testing. +   Rollback to a known-good state for error analysis and testing.
- +
----+
  
 ===== Best Practices ===== ===== Best Practices =====
  
 1. **Granular Checkpoints**: 1. **Granular Checkpoints**:
-   Save checkpoints at critical pipeline steps (e.g., post-feature extraction, model training).+   Save checkpoints at critical pipeline steps (e.g., post-feature extraction, model training).
  
 2. **Logging and Debugging**: 2. **Logging and Debugging**:
-   Leverage logging to monitor checkpoint creation and rollback actions.+   Leverage logging to monitor checkpoint creation and rollback actions.
  
 3. **Serialization**: 3. **Serialization**:
-   Use serialization (e.g., `pickle``JSON`, or database) for persistent checkpoint management, especially in distributed systems.+   Use serialization (e.g., **pickle****JSON**, or database) for persistent checkpoint management, especially in distributed systems.
  
 4. **Version Control**: 4. **Version Control**:
-   Employ versioning for checkpoints to avoid overwriting critical recovery points.+   Employ versioning for checkpoints to avoid overwriting critical recovery points.
  
 5. **Secure Recovery**: 5. **Secure Recovery**:
-   When using external storage (e.g., cloud), ensure encryption to secure sensitive pipeline states. +   When using external storage (e.g., cloud), ensure encryption to secure sensitive pipeline states.
- +
---- +
 ===== Conclusion ===== ===== Conclusion =====
  
ai_disaster_recovery.1748270496.txt.gz · Last modified: 2025/05/26 14:41 by eagleeyenebula